Hermite_e বহুপদী এবং x, y, z নমুনা পয়েন্টের একটি ছদ্ম Vandermonde ম্যাট্রিক্স তৈরি করতে, Python Numpy-এ hermite_e.hermevander3d() ব্যবহার করুন। পদ্ধতিটি সিউডো-ভ্যান্ডেরমন্ড ম্যাট্রিক্স প্রদান করে। প্যারামিটার, x, y, z হল বিন্দু স্থানাঙ্কের অ্যারে, সবগুলোই একই আকৃতির। কোনো উপাদান জটিল কিনা তার উপর নির্ভর করে dtypes float64 বা complex128-এ রূপান্তরিত হবে। স্কেলারগুলি 1-ডি অ্যারেতে রূপান্তরিত হয়। প্যারামিটার, deg হল ফর্মের সর্বাধিক ডিগ্রির তালিকা [x_deg, y_deg, z_deg]।
পদক্ষেপ
প্রথমে, প্রয়োজনীয় লাইব্রেরি আমদানি করুন -
import numpy as np from numpy.polynomial import hermite_e as H
numpy.array() পদ্ধতি ব্যবহার করে একই আকৃতির বিন্দু স্থানাঙ্কের অ্যারে তৈরি করুন -
x = np.array([-2.+2.j, -1.+2.j]) y = np.array([0.+2.j, 1.+2.j]) z = np.array([2.+2.j, 3. + 3.j])
অ্যারে প্রদর্শন করুন −
print("Array1...\n",x) print("\nArray2...\n",y) print("\nArray3...\n",z)
ডেটাটাইপ প্রদর্শন করুন −
print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype) print("\nArray3 datatype...\n",z.dtype)
উভয় অ্যারে-
এর মাত্রা পরীক্ষা করুনprint("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim) print("\nDimensions of Array3...\n",z.ndim)
উভয় অ্যারের আকৃতি পরীক্ষা করুন −
print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape) print("\nShape of Array3...\n",z.shape)
Hermite_e বহুপদী এবং x, y, z নমুনা বিন্দুর একটি ছদ্ম Vandermonde ম্যাট্রিক্স তৈরি করতে, hermite_e.hermevander3d() পদ্ধতি ব্যবহার করুন −
x_deg, y_deg, z_deg = 2, 3, 4 print("\nResult...\n",H.hermevander3d(x,y,z, [x_deg, y_deg, z_deg]))
উদাহরণ
import numpy as np from numpy.polynomial import hermite_e as H # Create arrays of point coordinates, all of the same shape using the numpy.array() method x = np.array([-2.+2.j, -1.+2.j]) y = np.array([0.+2.j, 1.+2.j]) z = np.array([2.+2.j, 3. + 3.j]) # Display the arrays print("Array1...\n",x) print("\nArray2...\n",y) print("\nArray3...\n",z) # Display the datatype print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype) print("\nArray3 datatype...\n",z.dtype) # Check the Dimensions of both the arrays print("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim) print("\nDimensions of Array3...\n",z.ndim) # Check the Shape of both the arrays print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape) print("\nShape of Array3...\n",z.shape) # To generate a pseudo Vandermonde matrix of the Hermite_e polynomial and x, y, z sample points, use the hermite_e.hermevander3d() in Python Numpy x_deg, y_deg, z_deg = 2, 3, 4 print("\nResult...\n",H.hermevander3d(x,y,z, [x_deg, y_deg, z_deg]))
আউটপুট
Array1... [-2.+2.j -1.+2.j] Array2... [0.+2.j 1.+2.j] Array3... [2.+2.j 3.+3.j] Array1 datatype... complex128 Array2 datatype... complex128 Array3 datatype... complex128 Dimensions of Array1... 1 Dimensions of Array2... 1 Dimensions of Array3... 1 Shape of Array1... (2,) Shape of Array2... (2,) Shape of Array3... (2,) Result... [[ 1.0000e+00 +0.000e+00j 2.0000e+00 +2.000e+00j -1.0000e+00 +8.000e+00j -2.2000e+01 +1.000e+01j -6.1000e+01-4.800e+01j 0.0000e+00 +2.000e+00j -4.0000e+00 +4.000e+00j -1.6000e+01-2.000e+00j -2.0000e+01 -4.400e+01j 9.6000e+01 -1.220e+02j -5.0000e+00+0.000e+00j -1.0000e+01 -1.000e+01j 5.0000e+00 -4.000e+01j 1.1000e+02 -5.000e+01j 3.0500e+02 +2.400e+02j 0.0000e+00 -1.400e+01j 2.8000e+01 -2.800e+01j 1.1200e+02 +1.400e+01j 1.4000e+02 +3.080e+02j -6.7200e+02 +8.540e+02j -2.0000e+00 +2.000e+00j -8.0000e+00 +0.000e+00j -1.4000e+01 -1.800e+01j 2.4000e+01 -6.400e+01j 2.1800e+02 -2.600e+01j -4.0000e+00 -4.000e+00j 0.0000e+00 -1.600e+01j 3.6000e+01 -2.800e+01j 1.2800e+02 +4.800e+01j 5.2000e+01 +4.360e+02j 1.0000e+01 -1.000e+01j 4.0000e+01 +0.000e+00j 7.0000e+01 +9.000e+01j -1.2000e+02 +3.200e+02j -1.0900e+03 +1.300e+02j 2.8000e+01 +2.800e+01j 0.0000e+00 +1.120e+02j -2.5200e+02 +1.960e+02j -8.9600e+02 -3.360e+02j -3.6400e+02 -3.052e+03j -1.0000e+00 -8.000e+00j 1.4000e+01 -1.800e+01j 6.5000e+01 +0.000e+00j 1.0200e+02 +1.660e+02j -3.2300e+02 +5.360e+02j 1.6000e+01 -2.000e+00j 3.6000e+01 +2.800e+01j 0.0000e+00 +1.300e+02j -3.3200e+02 +2.040e+02j -1.0720e+03 -6.460e+02j 5.0000e+00 +4.000e+01j -7.0000e+01 +9.000e+01j -3.2500e+02 +0.000e+00j -5.1000e+02 -8.300e+02j 1.6150e+03 -2.680e+03j -1.1200e+02 +1.400e+01j -2.5200e+02 -1.960e+02j 0.0000e+00 -9.100e+02j 2.3240e+03 -1.428e+03j 7.5040e+03 +4.522e+03j] [ 1.0000e+00 +0.000e+00j 3.0000e+00 +3.000e+00j -1.0000e+00 +1.800e+01j -6.3000e+01 +4.500e+01j -3.2100e+02 -1.080e+02j 1.0000e+00 +2.000e+00j -3.0000e+00 +9.000e+00j -3.7000e+01 +1.600e+01j -1.5300e+02 -8.100e+01j -1.0500e+02 -7.500e+02j -4.0000e+00 +4.000e+00j -2.4000e+01 +0.000e+00j -6.8000e+01 -7.600e+01j 7.2000e+01 -4.320e+02j 1.7160e+03 -8.520e+02j -1.4000e+01 -8.000e+00j -1.8000e+01 -6.600e+01j 1.5800e+02 -2.440e+02j 1.2420e+03 -1.260e+02j 3.6300e+03 +4.080e+03j -1.0000e+00 +2.000e+00j -9.0000e+00 +3.000e+00j -3.5000e+01 -2.000e+01j -2.7000e+01 -1.710e+02j 5.3700e+02 -5.340e+02j -5.0000e+00 +0.000e+00j -1.5000e+01 -1.500e+01j 5.0000e+00 -9.000e+01j 3.1500e+02 -2.250e+02j 1.6050e+03 +5.400e+02j -4.0000e+00 -1.200e+01j 2.4000e+01 -4.800e+01j 2.2000e+02 -6.000e+01j 7.9200e+02 +5.760e+02j -1.2000e+01 +4.284e+03j 3.0000e+01 -2.000e+01j 1.5000e+02 +3.000e+01j 3.3000e+02 +5.600e+02j -9.9000e+02 +2.610e+03j -1.1790e+04 +3.180e+03j -4.0000e+00 -4.000e+00j 0.0000e+00 -2.400e+01j 7.6000e+01 -6.800e+01j 4.3200e+02 +7.200e+01j 8.5200e+02 +1.716e+03j 4.0000e+00 -1.200e+01j 4.8000e+01 -2.400e+01j 2.1200e+02 +8.400e+01j 2.8800e+02 +9.360e+02j -2.5800e+03 +3.420e+03j 3.2000e+01 +0.000e+00j 9.6000e+01 +9.600e+01j -3.2000e+01 +5.760e+02j -2.0160e+03 +1.440e+03j -1.0272e+04 -3.456e+03j 2.4000e+01 +8.800e+01j -1.9200e+02 +3.360e+02j -1.6080e+03 +3.440e+02j -5.4720e+03 -4.464e+03j 1.8000e+03 -3.084e+04j]]