পান্ডাস ডেটাফ্রেম মার্জ করতে, একত্রীকরণ ব্যবহার করুন () ফাংশন। বাম বাইরের যোগদানটি “কীভাবে এর অধীনে সেট করে উভয় ডেটাফ্রেমে প্রয়োগ করা হয় ” মার্জ() ফাংশনের প্যারামিটার যেমন −
how = “left”
প্রথমে, আসুন পান্ডাস লাইব্রেরিটিকে একটি উপনাম −
দিয়ে আমদানি করিimport pandas as pd
একত্রিত করার জন্য দুটি ডেটাফ্রেম তৈরি করা যাক -
# Create DataFrame1 dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90] } ) # Create DataFrame2 dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'],"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000] } )
সাধারণ কলাম কারের সাথে ডেটাফ্রেমগুলিকে একত্রিত করুন এবং "কিভাবে" প্যারামিটারে "বাম" লেফট আউটার জয়েন প্রয়োগ করে −
mergedRes = pd.merge(dataFrame1, dataFrame2, on ='Car', how ="left")
উদাহরণ
নিম্নলিখিত কোড -
import pandas as pd # Create DataFrame1 dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90] } ) print"DataFrame1 ...\n",dataFrame1 # Create DataFrame2 dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'],"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000] } ) print"\nDataFrame2 ...\n",dataFrame2 # merge DataFrames with common column Car and "left" in "how" parameter implements Left Outer Join mergedRes = pd.merge(dataFrame1, dataFrame2, on ='Car', how ="left") print"\nMerged dataframe with left outer join...\n", mergedRes
আউটপুট
এটি নিম্নলিখিত আউটপুট −
তৈরি করবেDataFrame1 ... Car Units 0 BMW 100 1 Lexus 150 2 Audi 110 3 Mustang 80 4 Bentley 110 5 Jaguar 90 DataFrame2 ... Car Reg_Price 0 BMW 7000 1 Lexus 1500 2 Tesla 5000 3 Mustang 8000 4 Mercedes 9000 5 Jaguar 6000 Merged dataframe with left outer join... Car Units Reg_Price 0 BMW 100 7000.0 1 Lexus 150 1500.0 2 Audi 110 NaN 3 Mustang 80 8000.0 4 Bentley 110 NaN 5 Jaguar 90 6000.0