এই নিবন্ধে, আমরা নীচে দেওয়া সমস্যার বিবৃতিটির সমাধান সম্পর্কে শিখব।
সমস্যা বিবৃতি − আমাদেরকে pos ফর্ম দেওয়া হয়েছে আমাদের এটিকে এর সমতুল্য sop ফর্মে রূপান্তর করতে হবে
রূপান্তরটি প্রথমে pos আকারে বর্ণমালার সংখ্যা গণনা করে এবং তারপরে সমস্ত সর্বোচ্চ এবং মিনটার্মগুলি গণনা করে করা যেতে পারে।
এখন নিচের বাস্তবায়নে ধারণাটি পর্যবেক্ষণ করা যাক—
উদাহরণ
# Python code to convert standard POS form # to standard SOP form # to calculate number of variables def count_no_alphabets(POS): i = 0 no_var = 0 # total no. of alphabets before will be equal to alphabets before first '.' character while (POS[i]!='.'): # character is a alphabet or not if (POS[i].isalpha()): no_var+= 1 i+= 1 return no_var # maximum terms in an integer def Cal_Max_terms(Max_terms, POS): a = "" i = 0 while (i<len(POS)): if (POS[i]=='.'): # binary to decimal conversion b = int(a, 2) # append each min term(integer type) into the list Max_terms.append(b) # assign empty strings a ="" i+= 1 elif(POS[i].isalpha()): # checking whether variable is having complement as superscript if(i + 1 != len(POS) and POS[i + 1]=="'"): # concatenating the string with '1' a += '1' # incrementing by 2 because 1 for alphabet and another for a symbol "'" i += 2 else: # concatenating the string with '0' a += '0' i += 1 else: i+= 1 # append last min term(integer type) into the list Max_terms.append(int(a, 2)) # conversion of minterms in binary and finally converting it to SOP def Cal_Min_terms(Max_terms, no_var, start_alphabet): # declaration of the list Min_terms =[] # calculation of total no. of terms formed by all variables max = 2**no_var for i in range(0, max): # is current term present in max_terms or not if (Max_terms.count(i)== 0): # converting integer to binary b = bin(i)[2:] # loop used for inserting 0's before the # binary value so that its length will be # equal to no. of variables present in # each product term while(len(b)!= no_var): b ='0'+b # appending the max terms(integer) in the list Min_terms.append(b) SOP = "" # iterated untill minterms are available for i in Min_terms: # fetching the variable value = start_alphabet # iterate till there are 0's and 1's for j in i: # check whether the varailble is complemented or not if (j =='0'): # concatenating vaue and complement operator SOP = SOP + value+ "'" # check the non complement variable else: # concatenating value SOP = SOP + value # increment the alphabet by the next adjacent alaphabet value = chr(ord(value)+1) # concatenating the "+" operator SOP = SOP+ "+" # for discarding the extra '+' SOP = SOP[:-1] return SOP # main function def main(): # input POS_expr ="(A'+B'+C).(A+B+C').(A+B'+C).(A'+B+C)" Max_terms = [] no_var = count_no_alphabets(POS_expr) Cal_Max_terms(Max_terms, POS_expr) SOP_expr = Cal_Min_terms(Max_terms, no_var, POS_expr[1]) print("Standard SOP form of " + POS_expr + " ==> " + SOP_expr) # Driver code if __name__=="__main__": main()
আউটপুট
Standard SOP form of (A'+B'+C).(A+B+C').(A+B'+C).(A'+B+C) ==> A'B'C'+A'BC+AB'C+ABC
সমস্ত ভেরিয়েবল স্থানীয় সুযোগে ঘোষণা করা হয়েছে এবং তাদের রেফারেন্স উপরের চিত্রে দেখা যাচ্ছে।
উপসংহার
এই নিবন্ধে, আমরা শিখেছি কিভাবে আমরা pos-কে sop ফর্মে রূপান্তর করতে পারি