Tensorflow হল একটি মেশিন লার্নিং ফ্রেমওয়ার্ক যা Google প্রদান করে। এটি একটি ওপেন সোর্স ফ্রেমওয়ার্ক যা পাইথনের সাথে অ্যালগরিদম, গভীর শিক্ষার অ্যাপ্লিকেশন এবং আরও অনেক কিছু বাস্তবায়নের জন্য ব্যবহৃত হয়। এটি গবেষণা এবং উত্পাদন উদ্দেশ্যে ব্যবহৃত হয়। এটিতে অপ্টিমাইজেশন কৌশল রয়েছে যা জটিল গাণিতিক ক্রিয়াকলাপগুলি দ্রুত সম্পাদন করতে সহায়তা করে। কারণ এটি NumPy এবং বহুমাত্রিক অ্যারে ব্যবহার করে। এই বহুমাত্রিক অ্যারেগুলি 'টেনসর' নামেও পরিচিত। ফ্রেমওয়ার্ক গভীর নিউরাল নেটওয়ার্কের সাথে কাজ করতে সহায়তা করে। এটি অত্যন্ত স্কেলযোগ্য এবং অনেক জনপ্রিয় ডেটাসেটের সাথে আসে। এটি GPU গণনা ব্যবহার করে এবং সংস্থানগুলির পরিচালনাকে স্বয়ংক্রিয় করে। এটি অনেকগুলি মেশিন লার্নিং লাইব্রেরির সাথে আসে এবং এটি ভালভাবে সমর্থিত এবং নথিভুক্ত। ফ্রেমওয়ার্কের ডিপ নিউরাল নেটওয়ার্ক মডেল চালানো, তাদের প্রশিক্ষণ এবং সংশ্লিষ্ট ডেটাসেটের প্রাসঙ্গিক বৈশিষ্ট্যের পূর্বাভাস দেয় এমন অ্যাপ্লিকেশন তৈরি করার ক্ষমতা রয়েছে।
'টেনসরফ্লো' প্যাকেজটি নীচের কোড-
লাইনটি ব্যবহার করে উইন্ডোজে ইনস্টল করা যেতে পারেpip install tensorflow
টেনসর হল টেনসরফ্লোতে ব্যবহৃত একটি ডেটা স্ট্রাকচার। এটি একটি প্রবাহ চিত্রে প্রান্তগুলিকে সংযুক্ত করতে সহায়তা করে। এই ফ্লো ডায়াগ্রামটি 'ডেটা ফ্লো গ্রাফ' নামে পরিচিত। টেনসর একটি বহুমাত্রিক অ্যারে বা একটি তালিকা ছাড়া কিছুই নয়। তিনটি প্রধান বৈশিষ্ট্য −
ব্যবহার করে তাদের চিহ্নিত করা যায়-
র্যাঙ্ক - এটি টেনসরের মাত্রিকতা সম্পর্কে বলে। এটি টেনসরের ক্রম বা টেনসরের মাত্রার সংখ্যা হিসাবে বোঝা যায় যা সংজ্ঞায়িত করা হয়েছে।
-
টাইপ করুন৷ - এটি টেনসরের উপাদানগুলির সাথে যুক্ত ডেটা টাইপ সম্পর্কে বলে। এটি এক মাত্রিক, দ্বিমাত্রিক বা এন ডাইমেনশনাল টেনসর হতে পারে।
-
আকৃতি − এটি সারি এবং কলামের একসাথে সংখ্যা।
আমরা নিচের কোডটি চালানোর জন্য Google Colaboratory ব্যবহার করছি। Google Colab বা Colaboratory ব্রাউজারে Python কোড চালাতে সাহায্য করে এবং এর জন্য শূন্য কনফিগারেশন এবং GPUs (গ্রাফিক্যাল প্রসেসিং ইউনিট) তে বিনামূল্যে অ্যাক্সেস প্রয়োজন। জুপিটার নোটবুকের উপরে কোলাবোরেটরি তৈরি করা হয়েছে।
উদাহরণ
print("Iterating through the training data") for i, label in enumerate(raw_train_ds.class_names): print("Label", i, "maps to", label) print("The training parameters have been defined") raw_val_ds = preprocessing.text_dataset_from_directory( train_dir, batch_size=batch_size, validation_split=0.25, subset='validation', seed=seed) print("The test dataset is being prepared") test_dir = dataset_dir/'test' raw_test_ds = preprocessing.text_dataset_from_directory( test_dir, batch_size=batch_size)
কোড ক্রেডিট - https://www.tensorflow.org/tutorials/load_data/text
আউটপুট
Iterating through the training data Label 0 maps to csharp Label 1 maps to java Label 2 maps to javascript Label 3 maps to python The training parameters have been defined Found 8000 files belonging to 4 classes. Using 2000 files for validation. The test dataset is being prepared Found 8000 files belonging to 4 classes.
ব্যাখ্যা
-
প্রশিক্ষণ ডেটার মাধ্যমে পুনরাবৃত্তি করা হয়৷
৷ -
প্রশিক্ষণ, পরীক্ষা এবং যাচাইকরণ সেটের জন্য সারির সংখ্যা কনসোলে প্রদর্শিত হয়৷
-
ডেটাটি 'text_dataset_from_directory' ইউটিলিটি ব্যবহার করে প্রি-প্রসেস করা হয়।