কম্পিউটার

26টি বিগ ডেটা অ্যানালাইটিক টেকনিকের একটি অন্তর্দৃষ্টি:পার্ট 2

এখন পর্যন্ত বিগ ডেটা সম্পর্কে আমার ব্লগগুলিতে, আমি আপনাকে বিগ ডেটার বিভিন্ন দিক থেকে পরিচিত করেছি, এটি আসলে কী বোঝায় এবং এর করণীয় এবং না করা পর্যন্ত। আগের ব্লগে আমরা কিছু বিগ ডেটা অ্যানালিটিক্স টেকনিক দেখেছিলাম। এই ব্লগে তালিকাটি আরও এগিয়ে নিয়ে যাওয়া।

  1. প্যাটার্ন স্বীকৃতি

প্যাটার্ন রিকগনিশন হল মেশিন লার্নিংয়ের একটি শাখা যা ডেটাতে প্যাটার্ন এবং নিয়মিততার স্বীকৃতির উপর ফোকাস করে, যদিও কিছু ক্ষেত্রে এটিকে মেশিন লার্নিংয়ের প্রায় সমার্থক বলে মনে করা হয়। প্যাটার্ন রিকগনিশন সিস্টেমগুলি অনেক ক্ষেত্রে লেবেলযুক্ত "প্রশিক্ষণ" ডেটা (তত্ত্বাবধানে থাকা শিক্ষা) থেকে প্রশিক্ষিত হয়, কিন্তু যখন কোনও লেবেলযুক্ত ডেটা উপলব্ধ না হয় তখন পূর্বের অজানা নিদর্শনগুলি (অনিদর্শিত শিক্ষা) আবিষ্কার করতে অন্যান্য অ্যালগরিদম ব্যবহার করা যেতে পারে।

26টি বিগ ডেটা অ্যানালাইটিক টেকনিকের একটি অন্তর্দৃষ্টি:পার্ট 2

  1. ভবিষ্যদ্বাণীমূলক মডেলিং

ভবিষ্যদ্বাণীমূলক বিশ্লেষণে বিভিন্ন কৌশল রয়েছে যা ঐতিহাসিক এবং বর্তমান ডেটার উপর ভিত্তি করে ভবিষ্যত ফলাফলের পূর্বাভাস দেয়। বাস্তবে, ভবিষ্যদ্বাণীমূলক বিশ্লেষণ প্রায় সব ক্ষেত্রেই প্রয়োগ করা যেতে পারে - কয়েক হাজার সেন্সর থেকে ডেটার প্রবাহের উপর ভিত্তি করে জেট ইঞ্জিনের ব্যর্থতার পূর্বাভাস দেওয়া থেকে শুরু করে গ্রাহকরা কী কিনছেন, কখন কিনবেন এবং এমনকি কি কি তার উপর ভিত্তি করে তাদের পরবর্তী পদক্ষেপের পূর্বাভাস দেওয়া পর্যন্ত। তারা সোশ্যাল মিডিয়ায় বলে। ভবিষ্যদ্বাণীমূলক বিশ্লেষণ কৌশল প্রাথমিকভাবে পরিসংখ্যান পদ্ধতির উপর ভিত্তি করে।

  1. রিগ্রেশন বিশ্লেষণ

এটি একটি কৌশল যা স্বাধীন ভেরিয়েবলের ব্যবহার গ্রহণ করে এবং কীভাবে তারা নির্ভরশীল ভেরিয়েবলকে প্রভাবিত করে। এটি একটি ইন্টারনেট প্ল্যাটফর্মের মাধ্যমে প্রেম খোঁজার সম্ভাবনার মতো সামাজিক মিডিয়া বিশ্লেষণ নির্ধারণে একটি খুব দরকারী কৌশল হতে পারে৷

  1. সেন্টিমেন্ট অ্যানালাইসিস

সেন্টিমেন্ট অ্যানালাইসিস গবেষকদের একটি বিষয়ের সাথে বক্তা বা লেখকদের অনুভূতি নির্ধারণ করতে সাহায্য করে৷ অনুভূতি বিশ্লেষণ সাহায্য করার জন্য ব্যবহার করা হচ্ছে:

  • অতিথির মন্তব্য বিশ্লেষণ করে হোটেল চেইনে পরিষেবা উন্নত করুন।
  • গ্রাহকরা আসলে কী চাইছেন তা মোকাবেলায় উদ্দীপনা এবং পরিষেবাগুলি কাস্টমাইজ করুন৷
  • সোশ্যাল মিডিয়ার মতামতের ভিত্তিতে ভোক্তারা আসলে কী ভাবছেন তা নির্ধারণ করুন৷
  1. সিগন্যাল প্রসেসিং

সিগন্যাল প্রসেসিং হল একটি সক্ষম প্রযুক্তি যা মৌলিক তত্ত্ব, অ্যাপ্লিকেশন, অ্যালগরিদম এবং প্রক্রিয়াকরণ বা তথ্য স্থানান্তরের বাস্তবায়নকে অন্তর্ভুক্ত করে যা বিভিন্ন ভৌত, প্রতীকী, বা বিমূর্ত ফর্ম্যাটে ব্যাপকভাবে মনোনীত করা হয়। সংকেত . এটি গাণিতিক, পরিসংখ্যানগত, গণনামূলক, হিউরিস্টিক এবং ভাষাগত উপস্থাপনা, আনুষ্ঠানিকতা, এবং উপস্থাপনা, মডেলিং, বিশ্লেষণ, সংশ্লেষণ, আবিষ্কার, পুনরুদ্ধার, সংবেদন, অধিগ্রহণ, নিষ্কাশন, শিক্ষা, নিরাপত্তা বা ফরেনসিকের জন্য কৌশল ব্যবহার করে। নমুনা অ্যাপ্লিকেশনগুলির মধ্যে রয়েছে টাইম সিরিজ বিশ্লেষণের জন্য মডেলিং বা কম সুনির্দিষ্ট ডেটা উত্সের একটি সেট থেকে ডেটা একত্রিত করে আরও সুনির্দিষ্ট রিডিং নির্ধারণ করতে ডেটা ফিউশন প্রয়োগ করা (যেমন, শব্দ থেকে সংকেত বের করা)।

  1. স্থানিক বিশ্লেষণ

স্থানিক বিশ্লেষণ হল সেই প্রক্রিয়া যার মাধ্যমে আমরা কাঁচা ডেটাকে দরকারী তথ্যে পরিণত করি৷ It is the process of examining the locations, attributes, and relationships of features in spatial data through overlay and other analytical techniques in order to address a question or gain useful knowledge. Spatial analysis extracts or creates new information from spatial data.

  1. Statistics

In statistics, exploratory data analysis is an approach to analyzing data sets to summarize their main characteristics, often with visual methods. A statistical model can be used or not, but primarily EDA is for seeing what the data can tell us beyond the formal modelling or hypothesis testing task. Statistical techniques are also used to reduce the likelihood of Type I errors (“false positives”) and Type II errors (“false negatives”). An example of an application is A/B testing to determine what types of marketing material will most increase revenue.

  1. Supervised learning

Supervised learning is the machine learning task of inferring a function from labeled training data. The training data consist of a set of training examples . In supervised learning, each example is a pair consisting of an input object (typically a vector) and a desired output value (also called the supervisory signal ) A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for mapping new examples.

26টি বিগ ডেটা অ্যানালাইটিক টেকনিকের একটি অন্তর্দৃষ্টি:পার্ট 2

  1. Social Network Analysis

Social network analysis is a technique that was first used in the telecommunications industry, and then quickly adopted by sociologists to study interpersonal relationships. It is now being applied to analyze the relationships between people in many fields and commercial activities. Nodes represent individuals within a network, while ties represent the relationships between the individuals.

  1. Simulation

Modeling the behavior of complex systems, often used for forecasting, predicting and scenario planning. Monte Carlo simulations, for example, are a class of algorithms that rely on repeated random sampling, i.e., running thousands of simulations, each based on different assumptions. The result is a histogram that gives a probability distribution of outcomes. One application is assessing the likelihood of meeting financial targets given uncertainties about the success of various initiatives

  1. Time Series Analysis

Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series data often arise when monitoring industrial processes or tracking corporate business metrics. Time series analysis accounts for the fact that data points taken over time may have an internal structure (such as autocorrelation, trend or seasonal variation) that should be accounted for. Examples of time series analysis include the hourly value of a stock market index or the number of patients diagnosed with a given condition every day.

  1. Unsupervised Learning

Unsupervised learning is the machine learning task of inferring a function to describe hidden structure from unlabeled data. Since the examples given to the learner are unlabeled, there is no error or reward signal to evaluate a potential solution – this distinguishes unsupervised learning from supervised learning and reinforcement learning.

26টি বিগ ডেটা অ্যানালাইটিক টেকনিকের একটি অন্তর্দৃষ্টি:পার্ট 2

However, unsupervised learning also encompasses many other techniques that seek to summarize and explain key features of the data.

  1. Visualization

Data visualization is the preparation of data in a pictorial or graphical format. It enables decision makers to see analytics presented visually, so they can grasp difficult concepts or identify new patterns. With interactive visualization, you can take the concept a step further by using technology to drill down into charts and graphs for more detail, interactively changing what data you see and how it’s processed.

Conclusion

26টি বিগ ডেটা অ্যানালাইটিক টেকনিকের একটি অন্তর্দৃষ্টি:পার্ট 2

Big data analytics has been one of the most important breakthroughs in the information technology industry. In fact, Big Data has shown its importance and need almost in all sectors, and in all the departments of those industries. There is not a single aspect of life which has not been affected by Big Data, not even our personal lives. Hence we need Big Data Analytics to manage this huge amounts of Data efficiently.

As said before this list is not exhaustive. Researchers are still experimenting on new ways of Analyzing this huge amounts of Data which is present in a variety of forms whose speed of generation is increasing with time to derive values for our specific uses.


  1. কিভাবে বিগ ডেটা কৃত্রিম বুদ্ধিমত্তাকে রূপান্তরিত করছে?

  2. বিগ ডেটার সাথে কী ভুল হতে পারে?

  3. বিগ ডেটা চ্যালেঞ্জ যা জয় করা উচিত

  4. 2022 সালে 10 সেরা বিগ ডেটা অ্যানালিটিক্স টুল