আমাদেরকে x এবং n এর মান দেওয়া হয়েছে যেখানে, x হল cos এর কোণ এবং n হল cos(x) সিরিজের পদের সংখ্যা।
Cos(x) এর জন্য
Cos(x) হল একটি ত্রিকোণমিতিক ফাংশন যা x কোণের মান গণনা করতে ব্যবহৃত হয়।
সূত্র
$$\cos (x) =\displaystyle\sum\limits_{k=0}^\infty \frac{(-1)^{k}}{(2k!)}x^{2k}$$
Cos(x) সিরিজের জন্য
Cos(x) =1 – (x*2 / 2!) + (x*4 / 4!) – (x*6 / 6!) + (x*8 / 8!)……
উদাহরণ
Input-: x = 10, n = 3 Output-: 0.984804 Input-: x = 8, n = 2 Output-: 0.990266
নিম্নলিখিত প্রোগ্রামে ব্যবহৃত পদ্ধতি −
- x এবং n এর মান ইনপুট করুন
- cos(x) সিরিজ গণনার জন্য সূত্রটি প্রয়োগ করুন
- সমস্ত সিরিজের যোগফল হিসেবে ফলাফল প্রিন্ট করুন
অ্যালগরিদম
Start Step 1 Declare and initialize const double PI = 3.142 Step 2 In function double series_sum(double x, int n) Set x = x * (PI / 180.0) Set result = 1 Set s = 1, fact = 1, pow = 1 Loop For i = 1 and i < 5 and i++ Set s = s * -1 Set fact = fact * (2 * i - 1) * (2 * i) Set pow = pow * x * x Set result = result + s * pow / fact End Loop Return result Step 3 In function int main() s Declare and set x = 10 Declare and set n = 3 Print series_sum(x, n) Stop
উদাহরণ
#include <stdio.h> const double PI = 3.142; //will return the sum of cos(x) double series_sum(double x, int n) { x = x * (PI / 180.0); double result = 1; double s = 1, fact = 1, pow = 1; for (int i = 1; i < 5; i++) { s = s * -1; fact = fact * (2 * i - 1) * (2 * i); pow = pow * x * x; result = result + s * pow / fact; } return result; } //main function int main() { float x = 10; int n = 3; printf("%lf\n", series_sum(x, n)); return 0; }
আউটপুট
X=10; n=30.984804 X=13; n=80.974363 X=8; n=2 0.990266