গাউস জর্ডান নির্মূল করার জন্য এটি একটি C++ প্রোগ্রাম। এটি একযোগে সমীকরণের রৈখিক সিস্টেম বিশ্লেষণ করতে ব্যবহৃত হয়। এটি মূলত সারি ক্রিয়াকলাপের মাধ্যমে সমীকরণের সিস্টেমকে একটি তির্যক ম্যাট্রিক্স আকারে হ্রাস করার উপর দৃষ্টি নিবদ্ধ করে যাতে সমাধানটি সরাসরি পাওয়া যায়।
অ্যালগরিদম
Begin n = size of the input matrix To find the elements of the diagonal matrix: Make nested for loops j = 0 to n and i = 0 to n The element in the first row and the first column is made 1 and then the remaining elements in the first column are made 0. Similarly, the elements in the second row and the second column is made 1, and then the other elements in the second column are reduced to 0 and so on. Print all calculated solution values. End
উদাহরণ
#include<iostream> using namespace std; int main() { int i,j,k,n; // declare variables and matrixes as input float a[10][10],b,x[10]; printf("\nEnter the size of matrix: "); scanf("%d",&n); printf("\nEnter the elements of augmented matrix (rowwise):\ n"); for(i=1; i<=n; i++) { for(j=1; j<=(n+1); j++) { cout << "A[" << i << ", " << j << " ]="; cin >> a[i][j]; } } //to find the elements of diagonal matrix for(j=1; j<=n; j++) { for(i=1; i<=n; i++) { if(i!=j) { b=a[i][j]/a[j][j]; for(k=1; k<=n+1; k++) { a[i][k]=a[i][k]-b*a[j][k]; } } } } cout<<"\nThe solution is:\n"; for(i=1; i<=n; i++) { x[i]=a[i][n+1]/a[i][i]; cout<<"x"<<i << "="<<x[i]<<" "; } return(0); }
আউটপুট
Enter the size of matrix: 3 Enter the elements of augmented matrix row-wise: A[1, 1 ]=1 A[1, 2 ]=2 A[1, 3 ]=-4 A[1, 4 ]=2 A[2, 1 ]=7 A[2, 2 ]=6 A[2, 3 ]=-2 A[2, 4 ]=-5 A[3, 1 ]=0 A[3, 2 ]=-3 A[3, 3 ]=-5 A[3, 4 ]=-8 The solution is: x1=-2.89831 x2=2.5678 x3=0.059322