এটি একটি ম্যাট্রিক্সের ভিত্তি এবং মাত্রা খুঁজে পাওয়ার জন্য একটি C++ প্রোগ্রাম।
অ্যালগরিদম
Begin Function determinant() : It calculates determinant of the matrix. /* Arguments: n = number of elements. matrix[10][10] = input matrix. */ declare the submatrix submatrix[10][10]. //Body of the function: if (n == 2) return ((matrix[0][0] * matrix[1][1]) - (matrix[1][0] * matrix[0][1])) else Make a for loop c = 0 to n-1 Declare and initialize submati = 0, submatj. Make a For loop i = 1 to n-1 initialize subj = 0 Make a For loop i = 1 to n-1 if (j == c) continue submatrix[submati][submatj] = matrix[i][j]. Increment subj. increment submati. Compute d = d + (pow(-1, c) * matrix[0][c] * determinant(n- 1, submatrix)). End
উদাহরণ
#include<iostream> #include<math.h> using namespace std; double d = 0; double determinant(int n, double matrix[10][10]) { double submatrix[10][10]; if (n == 2) return ((matrix[0][0] * matrix[1][1]) - (matrix[1][0] * matrix[0][1])); else { for (int c = 0; c < n; c++) { int submati = 0,submatj; for (int i = 1; i < n; i++) { int subj = 0; for (int j = 0; j < n; j++) { if (j == c) continue; submatrix[submati][submatj] = matrix[i][j]; subj++; } submati++; } d = d + (pow(-1, c) * matrix[0][c] * determinant(n - 1, submatrix)); } } return d; } int main(int argc, char **argv) { cout << "Enter the number of elements:\n"; int n; cin >> n; double matrix[10][10]; cout << "Enter elements one by one:\n"; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { cin >> matrix[j][i]; } } d = determinant(n, matrix); //call the function if (d != 0) cout << "The elements form the basis of R" << n << " as the determinant is non-zero"; else cout << "The elements don't form the basis of R" << n << " as the determinant is zero"; }
আউটপুট - 1
Enter the number of elements: 3 Enter elements one by one: 7 6 1 2 3 4 5 8 9 The elements form the basis of R3 as the determinant is non-zero
আউটপুট - 2
Enter the number of elements: 4 Enter the elements one by one: 7 6 1 4 2 3 5 4 9 8 2 3 2 1 3 0 The elements don't form the basis of R4 as the determinant is zero