এই সমস্যায়, আমাদের দুটি পূর্ণসংখ্যা N এবং D দেওয়া হয়েছে। আমাদের কাজ হল D-এর পার্থক্য আছে এমন প্রথম N প্রাকৃতিক সংখ্যাগুলির সেট থেকে সেট করা সম্ভব কিনা তা পরীক্ষা করা।
সমস্যাটি বোঝার জন্য একটি উদাহরণ দেওয়া যাক,
ইনপুট − N=5 D =3
আউটপুট - হ্যাঁ
ব্যাখ্যা −
Out of 1, 2, 3, 4, 5. We can have two sets set1= {1, 2, 3} and set2 = {4, 5}, this will give difference 3. {4+5} - {1+2+3} = 9- 6 = 3
এই সমস্যা সমাধানের জন্য, আমাদের কিছু গাণিতিক হিসাব থাকবে।
আমরা জানি, সমস্ত সংখ্যার যোগফল হল দুটি সেটের উপাদানের যোগফল,
n প্রাকৃতিক সংখ্যা সূত্রের যোগফল,
sum(s1) + sum(s2) = (n*(n+1))/2. Given in the problem, sum(s1) - sum(s2) = D
উভয় যোগ করলে আমরা পাই,
2*sum(s1) = ((n*(n+1))/2) + D
যদি এই শর্তটি সত্য হয়, তবে শুধুমাত্র একটি সমাধান সম্ভব।
উদাহরণ
আমাদের সমাধানের বাস্তবায়ন দেখানোর জন্য প্রোগ্রাম,
#include <iostream> using namespace std; bool isSetPossible(int N, int D) { int set = (N * (N + 1)) / 2 + D; return (set % 2 == 0); } int main() { int N = 10; int D = 7; cout<<"Creating two set from first "<<N<<" natural number with difference "<<D<<" is "; isSetPossible(N, D)?cout<<"possible":cout<<"not possible"; return 0; }
আউটপুট
Creating two set from first 10 natural number with difference 7 is possible