টেনসরফ্লো হল একটি মেশিন লার্নিং ফ্রেমওয়ার্ক যা Google প্রদান করে। এটি একটি ওপেন সোর্স ফ্রেমওয়ার্ক যা পাইথনের সাথে অ্যালগরিদম, গভীর শিক্ষার অ্যাপ্লিকেশন এবং আরও অনেক কিছু বাস্তবায়নের জন্য ব্যবহৃত হয়। এটি গবেষণা এবং উৎপাদন উদ্দেশ্যে ব্যবহৃত হয়।
টেনসর হল টেনসরফ্লোতে ব্যবহৃত একটি ডেটা স্ট্রাকচার। এটি একটি প্রবাহ চিত্রে প্রান্তগুলিকে সংযুক্ত করতে সহায়তা করে। এই ফ্লো ডায়াগ্রামটি 'ডেটা ফ্লো গ্রাফ' নামে পরিচিত। টেনসর বহুমাত্রিক অ্যারে বা একটি তালিকা ছাড়া কিছুই নয়। তিনটি প্রধান বৈশিষ্ট্য ব্যবহার করে তাদের চিহ্নিত করা যেতে পারে:
-
র্যাঙ্ক - এটি টেনসরের মাত্রিকতা সম্পর্কে বলে। এটি টেনসরের ক্রম বা টেনসরের মাত্রার সংখ্যা হিসাবে বোঝা যায় যা সংজ্ঞায়িত করা হয়েছে।
-
টাইপ করুন - এটি টেনসরের উপাদানগুলির সাথে যুক্ত ডেটা টাইপ সম্পর্কে বলে। এটি এক মাত্রিক, দ্বিমাত্রিক বা এন ডাইমেনশনাল টেনসর হতে পারে।
-
আকৃতি − এটি সারি এবং কলামের একসাথে সংখ্যা।
রিগ্রেশন সমস্যার পিছনে লক্ষ্য হল একটি ক্রমাগত বা বিচ্ছিন্ন ভেরিয়েবলের আউটপুট, যেমন একটি মূল্য, সম্ভাবনা, বৃষ্টি হবে কি হবে না ইত্যাদি।
আমরা যে ডেটাসেট ব্যবহার করি তাকে বলা হয় 'অটো MPG' ডেটাসেট। এটিতে 1970 এবং 1980 এর অটোমোবাইলের জ্বালানী দক্ষতা রয়েছে। এতে ওজন, হর্সপাওয়ার, স্থানচ্যুতি এবং আরও অনেক কিছু রয়েছে। এর সাথে, আমাদের নির্দিষ্ট যানবাহনের জ্বালানী দক্ষতার পূর্বাভাস দিতে হবে।
নিচের কোডটি চালানোর জন্য আমরা Google Colaboratory ব্যবহার করছি। Google Colab বা Colaboratory ব্রাউজারে Python কোড চালাতে সাহায্য করে এবং এর জন্য শূন্য কনফিগারেশন এবং GPUs (গ্রাফিক্যাল প্রসেসিং ইউনিট) তে বিনামূল্যে অ্যাক্সেস প্রয়োজন। জুপিটার নোটবুকের উপরে কোলাবোরেটরি তৈরি করা হয়েছে। নিম্নলিখিত কোড স্নিপেট -
উদাহরণ
print("Predictions being viewed as a function of input variable") x = tf.linspace(0.0, 250, 251) y = hrspwr_model.predict(x) def plot_horsepower(x, y): plt.scatter(train_features['Horsepower'], train_labels, label='Actual Values') plt.plot(x, y, color='g', label='Prediction') plt.xlabel('Horsepower') plt.ylabel('MPG') plt.legend() plot_horsepower(x,y)
কোড ক্রেডিট - https://www.tensorflow.org/tutorials/keras/regression
আউটপুট
ব্যাখ্যা
-
'MPG'-এর জন্য ভবিষ্যদ্বাণী করা হয়।
-
প্রকৃত মান এবং ভবিষ্যদ্বাণীগুলি 'matplotlib' ব্যবহার করে প্লট করা হয়েছে৷
৷ -
মডেলের ভবিষ্যদ্বাণীগুলি ইনপুট ডেটার একটি ফাংশন হিসাবে দেখা হয়৷
৷