টেনসরফ্লো হল একটি মেশিন লার্নিং ফ্রেমওয়ার্ক যা Google প্রদান করে। এটি একটি ওপেন-সোর্স ফ্রেমওয়ার্ক যা পাইথনের সাথে অ্যালগরিদম, গভীর শিক্ষার অ্যাপ্লিকেশন এবং আরও অনেক কিছু বাস্তবায়নের জন্য ব্যবহৃত হয়। এটি গবেষণা এবং উত্পাদন উদ্দেশ্যে ব্যবহৃত হয়। এটিতে অপ্টিমাইজেশান কৌশল রয়েছে যা জটিল গাণিতিক ক্রিয়াকলাপগুলি দ্রুত সম্পাদন করতে সহায়তা করে৷
কারণ এটি NumPy এবং বহুমাত্রিক অ্যারে ব্যবহার করে। এই বহুমাত্রিক অ্যারেগুলি 'টেনসর' নামেও পরিচিত। ফ্রেমওয়ার্ক গভীর নিউরাল নেটওয়ার্কের সাথে কাজ করতে সহায়তা করে। এটি অত্যন্ত মাপযোগ্য, এবং অনেক জনপ্রিয় ডেটাসেটের সাথে আসে। এটি জিপিইউ গণনা ব্যবহার করে এবং সংস্থানগুলির পরিচালনাকে স্বয়ংক্রিয় করে। এটি অনেকগুলি মেশিন লার্নিং লাইব্রেরির সাথে আসে এবং এটি ভালভাবে সমর্থিত এবং নথিভুক্ত। ফ্রেমওয়ার্কের ডিপ নিউরাল নেটওয়ার্ক মডেল চালানো, তাদের প্রশিক্ষণ এবং সংশ্লিষ্ট ডেটাসেটের প্রাসঙ্গিক বৈশিষ্ট্যের পূর্বাভাস দেয় এমন অ্যাপ্লিকেশন তৈরি করার ক্ষমতা রয়েছে।
'টেনসরফ্লো' প্যাকেজটি নীচের কোড-
লাইনটি ব্যবহার করে উইন্ডোজে ইনস্টল করা যেতে পারেpip install tensorflow
টেনসর হল টেনসরফ্লোতে ব্যবহৃত একটি ডেটা স্ট্রাকচার। এটি একটি প্রবাহ চিত্রে প্রান্তগুলিকে সংযুক্ত করতে সহায়তা করে। এই ফ্লো ডায়াগ্রামটি 'ডেটা ফ্লো গ্রাফ' নামে পরিচিত। টেনসর বহুমাত্রিক অ্যারে বা একটি তালিকা ছাড়া কিছুই নয়। তিনটি প্রধান বৈশিষ্ট্য −
ব্যবহার করে তাদের চিহ্নিত করা যায়র্যাঙ্ক
এটি টেনসরের মাত্রিকতা সম্পর্কে বলে। এটি টেনসরের ক্রম বা টেনসরের মাত্রার সংখ্যা হিসাবে বোঝা যায় যা সংজ্ঞায়িত করা হয়েছে।
টাইপ করুন৷
এটি টেনসরের উপাদানগুলির সাথে সম্পর্কিত ডেটা টাইপ সম্পর্কে বলে। এটি এক মাত্রিক, দ্বিমাত্রিক বা এন ডাইমেনশনাল টেনসর হতে পারে।
আকৃতি
এটি একসাথে সারি এবং কলামের সংখ্যা।
আমরা এই কোডগুলি চালানোর জন্য জুপিটার নোটবুক ব্যবহার করব। 'পিপ ইনস্টল টেনসরফ্লো' ব্যবহার করে জুপিটার নোটবুকে টেনসরফ্লো ইনস্টল করা যেতে পারে।
আসুন একটি উদাহরণ দেখি -
উদাহরণ
npmatrix_1 =np.array([(1,2,3),(3,2,1),(1,1,1)],dtype ='int32')matrix_2 =np হিসাবেimport tensorflow as tf import numpy as np matrix_1 = np.array([(1,2,3),(3,2,1),(1,1,1)],dtype = 'int32') matrix_2 = np.array([(0,0,0),(-1,0,1),(3,3,4)],dtype = 'int32') print("The first matrix is ") print (matrix_1) print("The second matrix is ") print (matrix_2) print("The sum is ") matrix_1 = tf.constant(matrix_1) matrix_2 = tf.constant(matrix_2) matrix_sum = tf.add(matrix_1, matrix_2) print((matrix_sum))
আউটপুট
The first matrix is [[1 2 3] [3 2 1] [1 1 1]] The second matrix is [[ 0 0 0] [-1 0 1] [ 3 3 4]] The sum is tf.Tensor( [[1 2 3] [2 2 2] [4 4 5]], shape=(3, 3), dtype=int32)
ব্যাখ্যা
-
প্রয়োজনীয় প্যাকেজগুলি আমদানি করুন এবং ব্যবহারের সহজতার জন্য এটির একটি উপনাম প্রদান করুন৷
-
Numpy প্যাকেজ ব্যবহার করে দুটি ম্যাট্রিক্স তৈরি করা হয়।
-
এগুলিকে নম্পি অ্যারে থেকে টেনসরফ্লোতে একটি ধ্রুবক মানতে রূপান্তরিত করা হয়।
-
টেনসরফ্লোতে 'অ্যাড' ফাংশনটি ম্যাট্রিক্সে মান যোগ করতে ব্যবহৃত হয়।
-
ফলাফল যোগফল কনসোলে প্রদর্শিত হয়।