কম্পিউটার

কিভাবে Tensorflow একটি ব্যাচ মাত্রা যোগ করতে এবং Python ব্যবহার করে মডেলে ইমেজ পাস করতে ব্যবহার করা যেতে পারে?


টেনসরফ্লো একটি ব্যাচের মাত্রা যোগ করতে ব্যবহার করা যেতে পারে এবং ইমেজটিকে নম্পি অ্যারেতে রূপান্তর করে মডেলে ইমেজ পাস করতে পারে।

আরো পড়ুন: টেনসরফ্লো কী এবং নিউরাল নেটওয়ার্ক তৈরি করতে টেনসরফ্লো-এর সাথে কেরাস কীভাবে কাজ করে?

একটি নিউরাল নেটওয়ার্ক যা অন্তত একটি স্তর ধারণ করে একটি কনভোলিউশনাল স্তর হিসাবে পরিচিত। আমরা শেখার মডেল তৈরি করতে কনভোলিউশনাল নিউরাল নেটওয়ার্ক ব্যবহার করতে পারি।

নিচের কোডটি চালানোর জন্য আমরা Google Colaboratory ব্যবহার করছি। Google Colab বা Colaboratory ব্রাউজারে Python কোড চালাতে সাহায্য করে এবং এর জন্য শূন্য কনফিগারেশন এবং GPUs (গ্রাফিক্যাল প্রসেসিং ইউনিট) তে বিনামূল্যে অ্যাক্সেস প্রয়োজন। জুপিটার নোটবুকের উপরে কোলাবোরেটরি তৈরি করা হয়েছে।

ইমেজ শ্রেণীবিভাগের জন্য স্থানান্তর শেখার পিছনে অন্তর্দৃষ্টি হল, যদি একটি মডেলকে একটি বড় এবং সাধারণ ডেটাসেটে প্রশিক্ষণ দেওয়া হয়, তাহলে এই মডেলটি কার্যকরভাবে ভিজ্যুয়াল জগতের জন্য একটি জেনেরিক মডেল হিসাবে কাজ করতে ব্যবহার করা যেতে পারে। এটি বৈশিষ্ট্য মানচিত্রগুলি শিখেছে, যার অর্থ ব্যবহারকারীকে একটি বড় ডেটাসেটে একটি বড় মডেলের প্রশিক্ষণ দিয়ে স্ক্র্যাচ থেকে শুরু করতে হবে না৷

টেনসরফ্লো হাব হল একটি ভান্ডার যাতে রয়েছে প্রাক-প্রশিক্ষিত টেনসরফ্লো মডেল। টেনসরফ্লো শেখার মডেলগুলিকে সূক্ষ্ম-টিউন করতে ব্যবহার করা যেতে পারে৷

Tf.keras সহ TensorFlow Hub থেকে মডেলগুলি কীভাবে ব্যবহার করবেন তা আমরা বুঝব, TensorFlow Hub থেকে একটি চিত্র শ্রেণিবিন্যাস মডেল ব্যবহার করুন। এটি হয়ে গেলে, কাস্টমাইজড ইমেজ ক্লাসের জন্য একটি মডেলকে ফাইন-টিউন করার জন্য ট্রান্সফার লার্নিং করা যেতে পারে। এটি একটি ইমেজ নিতে এবং এটি কি তা ভবিষ্যদ্বাণী করার জন্য একটি পূর্বপ্রশিক্ষিত ক্লাসিফায়ার মডেল ব্যবহার করে করা হয়। এটি কোনো প্রশিক্ষণের প্রয়োজন ছাড়াই করা যেতে পারে।

উদাহরণ

grace_hopper = np.array(grace_hopper)/255.0
print("The dimensions of the image are")
print(grace_hopper.shape)
result = classifier.predict(grace_hopper[np.newaxis, ...])
print("The dimensions of the resultant image are")
print(result.shape)
predicted_class = np.argmax(result[0], axis=-1)
print("The predicted class is")
print(predicted_class)

কোড ক্রেডিট −https://www.tensorflow.org/tutorials/images/transfer_learning_with_hub

আউটপুট

The dimensions of the image are
(224, 224, 3)
The dimensions of the resultant image are
(1, 1001)
The predicted class is
819

ব্যাখ্যা

  • একটি ব্যাচের মাত্রা যোগ করা হয়েছে।
  • ছবিটি মডেলে পাঠানো হয়েছে৷
  • ফলাফল হল লগিটের একটি 1001 এলিমেন্ট ভেক্টর।
  • এটি ছবির জন্য প্রতিটি শ্রেণীর সম্ভাব্যতাকে রেট করবে।

  1. পাইথন ব্যবহার করে মডেলকে প্রশিক্ষণ দেওয়ার জন্য কীভাবে টেনসরফ্লো ব্যবহার করা যেতে পারে?

  2. পাইথন ব্যবহার করে পুনরুদ্ধার করা মডেলটি মূল্যায়ন করতে কেরাস কীভাবে ব্যবহার করা যেতে পারে?

  3. পাইথন ব্যবহার করে পুরো মডেলটিকে কীভাবে সংরক্ষণ করতে কেরাস ব্যবহার করা যেতে পারে?

  4. পাইথন ব্যবহার করে মডেল প্লট করার জন্য কেরাস কীভাবে ব্যবহার করা যেতে পারে?