একটি নির্দেশিত অ্যাসাইক্লিক গ্রাফে, আমরা টপোলজিকাল সাজানোর ব্যবহার করে শীর্ষবিন্দুগুলিকে রৈখিক ক্রমে সাজাতে পারি।
টপোলজিক্যাল সর্ট শুধুমাত্র নির্দেশিত অ্যাসাইক্লিক গ্রাফে কাজ করে। একটি ডাইরেক্টেড অ্যাসাইক্লিক গ্রাফে (DAG), একাধিক টপোলজিক্যাল সর্ট থাকতে পারে।
আমরা একটি C++ প্রোগ্রাম বিবেচনা করব, যা একটি গ্রাফে চক্র চেক করার জন্য টপোলজিকাল বাছাই করবে।
উদাহরণস্বরূপ
অ্যালগরিদম
Topological Sort: Begin Declare topo_sort(int *v, int T_S[][5], int i) function a = new NodeInfo. a->n = i a->S_Time = cn. Call push_node(a) function to insert data. v[i] = 1. for (int j = 0; j < 5; j++) if (T_S[i][j] == 0 || (T_S[i][j] == 1 && v[j] == 1)) then continue. else if(T_S[i][j] == 1 && v[j] == 0) then cn++. Call topo_sort(v,T_S, j) function. cn++. a = pop(). a->L_Time = cn. Store_Node(a). End.
উদাহরণ
#include<iostream> #include<conio.h> using namespace std; struct NodeInfo { int n; int L_Time, S_Time; } *a = NULL; struct Node { NodeInfo *ptr; Node *nxt; } *t = NULL, *b = NULL, *npt = NULL; struct Node_Link { Node_Link *lk; NodeInfo *ptr1; } *hd = NULL, *m = NULL, *n = NULL, *npt1 = NULL; int cn = 0; bool flag = false; void push_node(NodeInfo *pt) { //insert data npt = new Node; npt->ptr = pt; npt->nxt = NULL; if (t == NULL) { t = npt; } else { npt->nxt = t; t = npt; } } NodeInfo *pop() { if (t == NULL) { cout<<"underflow\n"; } else { b = t; t = t->nxt; return(b->ptr); delete(b); } } void Store_Node(NodeInfo *pt1) { //store data npt1 = new Node_Link; npt1->ptr1 = pt1; npt1->lk = NULL; if (cn == 0) { hd = npt1; m = hd; m->lk = NULL; cn++; } else { m = hd; npt1->lk = m; hd = npt1; } } void delete_node(int x) { //delete node m = hd; if ((m->ptr1)->n == x) { hd = hd->lk; delete(m); } else { while ((m->ptr1)->n != x && m->lk != NULL) { n = m; m = m->lk; } if ((m->ptr1)->n == x) { n->lk = m->lk; delete(m); } else if (m->lk == NULL) { flag = true; cout<<"There is no circle in this graph\n"; } } } void topo_sort(int *v, int T_S[][5], int i) { //performing topological sort a = new NodeInfo; a->n = i; a->S_Time = cn; push_node(a); v[i] = 1; for (int j = 0; j < 5; j++) { if (T_S[i][j] == 0 || (T_S[i][j] == 1 && v[j] == 1)) continue; else if(T_S[i][j] == 1 && v[j] == 0) { cn++; topo_sort(v,T_S,j); } } cn++; a = pop(); a->L_Time = cn; Store_Node(a); return; } void topologic_sort(int *v, int T_S[][5], int i) { v[i] = 1; delete_node(i); for (int j = 0; j < 5; j++) { if (T_S[i][j] == 0 || (T_S[i][j] == 1 && v[j] == 1)) { continue; } else if(T_S[i][j] == 1 && v[j] == 0) { topologic_sort(v, T_S, j); } } return; } void Insert_Edge(int T_S[][5], int source, int destination) { // insert the value of edge. T_S[source][destination] = 1; return; } int main() { int v[5], T_S[5][5], T_S_N[5][5], cn = 0, a, b; for (int i = 0; i < 5; i++) { v[i] = 0; } for (int i = 0; i < 5; i++) { for (int j = 0; j < 5; j++) { T_S[i][j] = 0; } } while (cn < 5) { cout<<"Enter the source: "; cin>>a; cout<<"Enter the destination: "; cin>>b; cout<<endl; Insert_Edge(T_S, a, b); cn++; } topo_sort(v, T_S, 0); for (int i = 0; i < 5; i++) { v[i] = 0; for (int j = 0; j < 5; j++) { T_S_N[j][i] = T_S[i][j]; } } if (hd != NULL) { topologic_sort(v, T_S_N, (hd->ptr1)->n); if (flag == false) { cout<<"There is a cycle in this graph...\n"; } } getch(); }
আউটপুট
Enter the source: 0 Enter the destination: 1 Enter the source: 1 Enter the destination: 2 Enter the source: 2 Enter the destination: 3 Enter the source: 3 Enter the destination: 4 Enter the source: 4 Enter the destination: 0 There is a cycle in this graph...