কম্পিউটার

পাইথনে স্ট্যাকওভারফ্লো প্রশ্নের জন্য পূর্বাভাস ট্যাগের সাথে যুক্ত ডেটাসেট ডাউনলোড এবং অন্বেষণ করতে কেরাস কীভাবে ব্যবহার করা যেতে পারে?


Tensorflow হল একটি মেশিন লার্নিং ফ্রেমওয়ার্ক যা Google প্রদান করে। এটি একটি ওপেন সোর্স ফ্রেমওয়ার্ক যা পাইথনের সাথে অ্যালগরিদম, গভীর শিক্ষার অ্যাপ্লিকেশন এবং আরও অনেক কিছু বাস্তবায়নের জন্য ব্যবহৃত হয়। এটি গবেষণা এবং উত্পাদন উদ্দেশ্যে ব্যবহৃত হয়। এটিতে অপ্টিমাইজেশান কৌশল রয়েছে যা জটিল গাণিতিক ক্রিয়াকলাপগুলি দ্রুত সম্পাদন করতে সহায়তা করে৷

কারণ এটি NumPy এবং বহুমাত্রিক অ্যারে ব্যবহার করে। এই বহুমাত্রিক অ্যারেগুলি 'টেনসর' নামেও পরিচিত। ফ্রেমওয়ার্ক গভীর নিউরাল নেটওয়ার্কের সাথে কাজ করতে সহায়তা করে। এটি অত্যন্ত স্কেলযোগ্য এবং অনেক জনপ্রিয় ডেটাসেটের সাথে আসে। এটি জিপিইউ গণনা ব্যবহার করে এবং সংস্থানগুলির পরিচালনাকে স্বয়ংক্রিয় করে। এটি অনেকগুলি মেশিন লার্নিং লাইব্রেরির সাথে আসে এবং এটি ভালভাবে সমর্থিত এবং নথিভুক্ত। ফ্রেমওয়ার্কের ডিপ নিউরাল নেটওয়ার্ক মডেল চালানো, তাদের প্রশিক্ষণ এবং সংশ্লিষ্ট ডেটাসেটের প্রাসঙ্গিক বৈশিষ্ট্যের পূর্বাভাস দেয় এমন অ্যাপ্লিকেশন তৈরি করার ক্ষমতা রয়েছে।

'টেনসরফ্লো' প্যাকেজটি নীচের কোড-

লাইনটি ব্যবহার করে উইন্ডোজে ইনস্টল করা যেতে পারে
pip install tensorflow

কেরাস ONEIROS (ওপেন-এন্ডেড নিউরো-ইলেক্ট্রনিক ইন্টেলিজেন্ট রোবট অপারেটিং সিস্টেম) প্রকল্পের গবেষণার অংশ হিসাবে তৈরি করা হয়েছিল। কেরাস একটি গভীর শিক্ষার API, যা পাইথনে লেখা। এটি একটি উচ্চ-স্তরের API যার একটি উত্পাদনশীল ইন্টারফেস রয়েছে যা মেশিন লার্নিং সমস্যা সমাধানে সহায়তা করে। এটি অত্যন্ত স্কেলযোগ্য এবং ক্রস-প্ল্যাটফর্ম ক্ষমতার সাথে আসে। এর মানে কেরাস টিপিইউ বা জিপিইউ এর ক্লাস্টারে চালানো যেতে পারে। কেরাস মডেলগুলি একটি ওয়েব ব্রাউজার বা মোবাইল ফোনেও চালানোর জন্য রপ্তানি করা যেতে পারে৷

কেরাস ইতিমধ্যেই টেনসরফ্লো প্যাকেজের মধ্যে উপস্থিত রয়েছে। এটি কোডের নীচের লাইন ব্যবহার করে অ্যাক্সেস করা যেতে পারে।

import tensorflow
from tensorflow import keras

আমরা নিচের কোডটি চালানোর জন্য Google Colaboratory ব্যবহার করছি। Google Colab বা Colaboratory ব্রাউজারে Python কোড চালাতে সাহায্য করে এবং এর জন্য শূন্য কনফিগারেশন এবং GPUs (গ্রাফিক্যাল প্রসেসিং ইউনিট) তে বিনামূল্যে অ্যাক্সেস প্রয়োজন। জুপিটার নোটবুকের উপরে কোলাবোরেটরি তৈরি করা হয়েছে। পাইথনে স্ট্যাকওভারফ্লো প্রশ্নের পূর্বাভাস ট্যাগের সাথে যুক্ত ডেটাসেট অন্বেষণ করার জন্য কোড স্নিপেটটি নিচে দেওয়া হল −

উদাহরণ

print("Downloading tensorflow-text")
!pip -q install tensorflow-text

import collections
import pathlib
import re
import string
import tensorflow as tf

from tensorflow.keras import layers
from tensorflow.keras import losses
from tensorflow.keras import preprocessing
from tensorflow.keras import utils
from tensorflow.keras.layers.experimental.preprocessing import TextVectorization

import tensorflow_datasets as tfds
import tensorflow_text as tf_text
data_url =
'https://storage.googleapis.com/download.tensorflow.org/data/stack_overflow_16k.tar.gz'
dataset = utils.get_file(
   'stack_overflow_16k.tar.gz',
   data_url,
   untar=True,
   cache_dir='stack_overflow',
   cache_subdir='')
dataset_dir = pathlib.Path(dataset).parent

কোড ক্রেডিট - https://www.tensorflow.org/tutorials/load_data/text

আউটপুট

Downloading tensorflow-text
Downloading data from
https://storage.googleapis.com/download.tensorflow.org/data/stack_overflow_16k.tar.gz
6053888/6053168 [==============================] - 0s 0us/step

ব্যাখ্যা

  • প্রয়োজনীয় প্যাকেজগুলি আমদানি করা হয়৷

  • ডেটা এপিআই থেকে লোড করা হয়।


  1. পাইথন ব্যবহার করে স্ট্যাকওভারফ্লো প্রশ্ন সহ ডেটাসেট প্রস্তুত করতে টেনসরফ্লো কীভাবে ব্যবহার করা যেতে পারে?

  2. পাইথন ব্যবহার করে স্ট্যাকওভারফ্লো প্রশ্ন রয়েছে এমন ডেটাসেট লোড করতে টেনসরফ্লো কীভাবে ব্যবহার করা যেতে পারে?

  3. কিভাবে টেনসরফ্লো ডেটাসেট অন্বেষণ করতে এবং পাইথন ব্যবহার করে স্ট্যাকওভারফ্লো প্রশ্ন ডেটাসেট থেকে একটি নমুনা ফাইল দেখতে ব্যবহার করা যেতে পারে?

  4. পাইথন ব্যবহার করে মডেলটিকে সংরক্ষণ এবং সিরিয়ালাইজ করতে কীভাবে কেরাস ব্যবহার করা যেতে পারে?