কম্পিউটার

টেনসরফ্লো ব্যবহার করে অটো এমপিজি ডেটাসেটে কীভাবে একটি ডিএনএন (ডিপ নিউরাল নেটওয়ার্ক) মডেল তৈরি করা যেতে পারে?


Tensorflow হল একটি মেশিন লার্নিং ফ্রেমওয়ার্ক যা Google প্রদান করে। এটি একটি ওপেন-সোর্স ফ্রেমওয়ার্ক যা পাইথনের সাথে অ্যালগরিদম, গভীর শিক্ষার অ্যাপ্লিকেশন এবং আরও অনেক কিছু বাস্তবায়নের জন্য ব্যবহৃত হয়। এটি গবেষণা এবং উৎপাদন উদ্দেশ্যে ব্যবহৃত হয়।

টেনসর হল টেনসরফ্লোতে ব্যবহৃত একটি ডেটা স্ট্রাকচার। এটি একটি প্রবাহ চিত্রে প্রান্তগুলিকে সংযুক্ত করতে সহায়তা করে। এই ফ্লো ডায়াগ্রামটি 'ডেটা ফ্লো গ্রাফ' নামে পরিচিত। টেনসর বহুমাত্রিক অ্যারে বা একটি তালিকা ছাড়া কিছুই নয়৷

আমরা যে ডেটাসেট ব্যবহার করি তাকে বলা হয় 'অটো MPG' ডেটাসেট। এটিতে 1970 এবং 1980 এর অটোমোবাইলের জ্বালানী দক্ষতা রয়েছে। এতে ওজন, হর্সপাওয়ার, স্থানচ্যুতি এবং আরও অনেক কিছু রয়েছে। এর সাথে, আমাদের নির্দিষ্ট যানবাহনের জ্বালানী দক্ষতার পূর্বাভাস দিতে হবে।

নিচের কোডটি চালানোর জন্য আমরা Google Colaboratory ব্যবহার করছি। Google Colab বা Colaboratory ব্রাউজারে Python কোড চালাতে সাহায্য করে এবং এর জন্য শূন্য কনফিগারেশন এবং GPUs (গ্রাফিক্যাল প্রসেসিং ইউনিট) তে বিনামূল্যে অ্যাক্সেস প্রয়োজন। জুপিটার নোটবুকের উপরে কোলাবোরেটরি তৈরি করা হয়েছে। নিম্নলিখিত কোড স্নিপেট -

উদাহরণ

print("DNN model")
history = dnn_horsepower_model.fit(
   train_features['Horsepower'], train_labels,
   validation_split=0.2,
   verbose=0, epochs=100)
print("Error with respect to every epoch")
plot_loss(history)
x = tf.linspace(0.0, 250, 251)
y = dnn_horsepower_model.predict(x)
plot_horsepower(x, y)
test_results['dnn_horsepower_model'] = dnn_horsepower_model.evaluate(
   test_features['Horsepower'], test_labels,
   verbose=0)

কোড ক্রেডিট - https://www.tensorflow.org/tutorials/keras/regression

আউটপুট

টেনসরফ্লো ব্যবহার করে অটো এমপিজি ডেটাসেটে কীভাবে একটি ডিএনএন (ডিপ নিউরাল নেটওয়ার্ক) মডেল তৈরি করা যেতে পারে?

ব্যাখ্যা

  • DNN একটি গভীর নিউরাল নেটওয়ার্ককে বোঝায়, এবং এই ক্ষেত্রে এটির একটি একক ইনপুট রয়েছে, অর্থাৎ 'হর্সপাওয়ার'৷

  • এই মডেলটি প্রশিক্ষণের ডেটার জন্য উপযুক্ত৷

  • 'ইতিহাস'-এ সংরক্ষিত পরিসংখ্যানগত প্যারামিটারগুলি কনসোলে প্লট করা হয়েছে৷

  • ভবিষ্যদ্বাণী করা হয় এবং 'মূল্যায়ন' পদ্ধতি ব্যবহার করে মূল্যায়ন করা হয়।


  1. কিভাবে TensorFlow ব্যবহার করে অটো MPG এর উপর ভিত্তি করে মডেল মূল্যায়ন করা যেতে পারে?

  2. টেনসরফ্লো ব্যবহার করে অটো MPG ডেটাসেটের সাথে মডেলটি কীভাবে ডেটার জন্য উপযুক্ত হতে পারে?

  3. কিভাবে TensorFlow ব্যবহার করে অটো MPG ডেটাসেট দিয়ে জ্বালানী দক্ষতা সম্পর্কে ভবিষ্যদ্বাণী করা যেতে পারে?

  4. TensorFlow ব্যবহার করে অটো MPG ডেটাসেটের মাধ্যমে জ্বালানি দক্ষতার পূর্বাভাস দেওয়ার জন্য কীভাবে ডেটা বিভক্ত এবং পরিদর্শন করা যেতে পারে?