একটি অনুক্রমিক মডেল প্রাসঙ্গিক হয় যখন স্তরগুলির একটি প্লেইন স্ট্যাক থাকে৷ এই স্ট্যাকে, প্রতিটি স্তরে ঠিক একটি ইনপুট টেনসর এবং একটি আউটপুট টেনসর রয়েছে। মডেলটিতে একাধিক ইনপুট বা একাধিক আউটপুট থাকলে এটি উপযুক্ত নয়। যখন স্তরগুলি ভাগ করা প্রয়োজন তখন এটি উপযুক্ত নয়। স্তরটিতে একাধিক ইনপুট বা একাধিক আউটপুট থাকলে এটি উপযুক্ত নয়। যখন একটি নন-লিনিয়ার আর্কিটেকচারের প্রয়োজন হয় তখন এটি উপযুক্ত নয়।
Tensorflow হল একটি মেশিন লার্নিং ফ্রেমওয়ার্ক যা Google প্রদান করে। এটি একটি ওপেন-সোর্স ফ্রেমওয়ার্ক যা পাইথনের সাথে অ্যালগরিদম, গভীর শিক্ষার অ্যাপ্লিকেশন এবং আরও অনেক কিছু বাস্তবায়নের জন্য ব্যবহৃত হয়। এটি গবেষণা এবং উত্পাদন উদ্দেশ্যে ব্যবহৃত হয়। এটিতে অপ্টিমাইজেশন কৌশল রয়েছে যা জটিল গাণিতিক ক্রিয়াকলাপগুলি দ্রুত সম্পাদন করতে সহায়তা করে৷
কারণ এটি NumPy এবং বহুমাত্রিক অ্যারে ব্যবহার করে। এই বহুমাত্রিক অ্যারেগুলি 'টেনসর' নামেও পরিচিত। ফ্রেমওয়ার্ক গভীর নিউরাল নেটওয়ার্কের সাথে কাজ করতে সহায়তা করে। এটি অত্যন্ত মাপযোগ্য, এবং অনেক জনপ্রিয় ডেটাসেটের সাথে আসে। এটি GPU গণনা ব্যবহার করে এবং সংস্থানগুলির পরিচালনাকে স্বয়ংক্রিয় করে। এটি প্রচুর মেশিন লার্নিং লাইব্রেরির সাথে আসে এবং এটি ভাল-সমর্থিত এবং নথিভুক্ত। ফ্রেমওয়ার্কের ডিপ নিউরাল নেটওয়ার্ক মডেল চালানো, তাদের প্রশিক্ষণ এবং সংশ্লিষ্ট ডেটাসেটের প্রাসঙ্গিক বৈশিষ্ট্যের পূর্বাভাস দেয় এমন অ্যাপ্লিকেশন তৈরি করার ক্ষমতা রয়েছে।
'টেনসরফ্লো' প্যাকেজটি নীচের কোড-
লাইনটি ব্যবহার করে উইন্ডোজে ইনস্টল করা যেতে পারেpip install tensorflow
টেনসর হল টেনসরফ্লোতে ব্যবহৃত একটি ডেটা স্ট্রাকচার। এটি একটি প্রবাহ চিত্রে প্রান্তগুলিকে সংযুক্ত করতে সহায়তা করে। এই ফ্লো ডায়াগ্রামটি 'ডেটা ফ্লো গ্রাফ' নামে পরিচিত। টেনসর বহুমাত্রিক অ্যারে বা একটি তালিকা ছাড়া কিছুই নয়। তিনটি প্রধান বৈশিষ্ট্য ব্যবহার করে তাদের চিহ্নিত করা যেতে পারে
-
র্যাঙ্ক - এটি টেনসরের মাত্রা সম্পর্কে বলে। এটি টেনসরের ক্রম বা টেনসরের মাত্রার সংখ্যা হিসাবে বোঝা যায় যা সংজ্ঞায়িত করা হয়েছে।
-
প্রকার - এটি টেনসরের উপাদানগুলির সাথে যুক্ত ডেটা টাইপ সম্পর্কে বলে। এটি এক মাত্রিক, দ্বিমাত্রিক বা এন ডাইমেনশনাল টেনসর হতে পারে।
-
আকৃতি - এটি একত্রে সারি এবং কলামের সংখ্যা।
কেরাস মানে গ্রীক ভাষায় 'শিং'। ONEIROS (ওপেন এন্ডেড নিউরো-ইলেক্ট্রনিক ইন্টেলিজেন্ট রোবট অপারেটিং সিস্টেম) প্রকল্পের গবেষণার অংশ হিসেবে কেরাস তৈরি করা হয়েছিল। কেরাস একটি গভীর শিক্ষার API, যা পাইথনে লেখা। এটি একটি উচ্চ-স্তরের API যার একটি উত্পাদনশীল ইন্টারফেস রয়েছে যা মেশিন লার্নিং সমস্যা সমাধানে সহায়তা করে। এটি টেনসরফ্লো ফ্রেমওয়ার্কের উপরে চলে। এটি একটি দ্রুত পদ্ধতিতে পরীক্ষা সাহায্য করার জন্য নির্মিত হয়েছিল. এটি প্রয়োজনীয় বিমূর্ততা এবং বিল্ডিং ব্লকগুলি প্রদান করে যা মেশিন লার্নিং সমাধানগুলি বিকাশ এবং এনক্যাপসুলেট করার জন্য অপরিহার্য৷
কেরাস ইতিমধ্যেই টেনসরফ্লো প্যাকেজের মধ্যে উপস্থিত রয়েছে। এটি কোডের নীচের লাইন ব্যবহার করে অ্যাক্সেস করা যেতে পারে।
import tensorflow from tensorflow import keras
নিচের কোডটি চালানোর জন্য আমরা Google Colaboratory ব্যবহার করছি। Google Colab বা Colaboratory ব্রাউজারে Python কোড চালাতে সাহায্য করে এবং এর জন্য শূন্য কনফিগারেশন এবং GPUs (গ্রাফিক্যাল প্রসেসিং ইউনিট) তে বিনামূল্যে অ্যাক্সেস প্রয়োজন। জুপিটার নোটবুকের উপরে কোলাবোরেটরি তৈরি করা হয়েছে।
আসুন কেরাস −
সহ টেনসরফ্লো সহ একটি অনুক্রমিক মডেল তৈরি করার একটি উদাহরণ দেখিউদাহরণ
print("A sequential model is being created") model = keras.Sequential() model.add(layers.Dense(2, activation="relu")) model.add(layers.Dense(3, activation="relu")) model.add(layers.Dense(4)) print("Dense layers have been added to the model")
কোড ক্রেডিট − https://www.tensorflow.org/guide/keras/sequential_model
আউটপুট
A sequenital model is being created Dense layers have been added to the model
ব্যাখ্যা
-
পাইথন ব্যবহার করে কেরাসে একটি ক্রমিক মডেল তৈরি করার এবং এতে স্তর যুক্ত করার এটি একটি বিকল্প পদ্ধতি৷
-
একটি ভেরিয়েবলকে 'অনুক্রমিক' পদ্ধতিতে কল দেওয়া হয়।
-
এই ভেরিয়েবলের সাথে, মডেলের জন্য স্তর তৈরি করতে 'অ্যাড' পদ্ধতি ব্যবহার করা হয়।
-
একবার স্তর যোগ করা হলে, ডেটা কনসোলে প্রদর্শিত হয়৷
৷