DAG এর টপোলজিক্যাল সর্টিং (ডাইরেক্টেড অ্যাসাইক্লিক গ্রাফ) হল শীর্ষবিন্দুর একটি রৈখিক ক্রম যাতে প্রতিটি নির্দেশিত প্রান্ত uv-এর জন্য, যেখানে ক্রমানুসারে v এর আগে শীর্ষবিন্দু u আসে। যদি গ্রাফটি একটি DAG না হয়, তাহলে একটি গ্রাফের জন্য টপোলজিক্যাল বাছাই করা সম্ভব নয়৷
৷ফাংশন এবং সিউডোকোড
Begin function topologicalSort(): a) Mark the current node as visited. b) Recur for all the vertices adjacent to this vertex. c) Push current vertex to stack which stores result. End Begin function topoSort() which uses recursive topological sort() function: a) Mark all the vertices which are not visited. b) Call the function topologicalSort(). c) Print the content. End
উদাহরণ
#include<iostream> #include <list> #include <stack> using namespace std; class G { int n; list<int> *adj; //declaration of functions void topologicalSort(int v, bool visited[], stack<int> &Stack); public: G(int n); //constructor void addEd(int v, int w); void topoSort(); }; G::G(int n) { this->n = n; adj = new list<int> [n]; } void G::addEd(int v, int w) // add the edges to the graph. { adj[v].push_back(w); //add w to v’s list } void G::topologicalSort(int v, bool visited[], stack<int> &Stack) { visited[v] = true; //mark current node as visited list<int>::iterator i; //Recur for all the vertices adjacent to this vertex. for (i = adj[v].begin(); i != adj[v].end(); ++i) if (!visited[*i]) topologicalSort(*i, visited, Stack); Stack.push(v); } void G::topoSort() { stack<int> Stack; bool *visited = new bool[n]; //Mark all the vertices which are not visited. for (int i = 0; i < n; i++) visited[i] = false; for (int i = 0; i < n; i++) if (visited[i] == false) //Call the function topologicalSort(). topologicalSort(i, visited, Stack); while (Stack.empty() == false) { cout << Stack.top() << " "; //print the element Stack.pop(); } } int main() { G g(6); g.addEd(4, 2); g.addEd(5, 1); g.addEd(4, 0); g.addEd(3, 1); g.addEd(1, 3); g.addEd(3, 2); cout << " Topological Sort of the given graph \n"; g.topoSort(); return 0; }
আউটপুট
Topological Sort of the given graph 5 4 1 3 2 0