এটি লেক্সিকো গ্রাফিক অর্ডারে প্রদত্ত সেটের সমস্ত উপসেট তৈরি করার জন্য C++ প্রোগ্রাম। এই অ্যালগরিদম ক্রমবর্ধমান ক্রমে প্রদত্ত অ্যারের সেট থেকে প্রতিটি দৈর্ঘ্যের সম্ভাব্য সমস্ত সংমিশ্রণ প্রিন্ট করে। এই অ্যালগরিদমের সময় জটিলতা হল O(n*(2^n))।
অ্যালগরিদম
Begin For each length ‘i’ GenAllSubset() function is called: 1) In GenAllSubset(), if currLen is more than the reqLen then return. 2) Otherwise, if currLen is equal to reqLen then there will be a new sequence generated, print it. 3) If proceed with a start as ‘true’ and recursively call GenAllSubset() with incremented value of ‘currLen’ and ‘s’. else proceed with a start as ‘false’ and recursively call GenAllSubset() with incremented value of ‘s’. End
উদাহরণ
#include<iostream> using namespace std; void Sorting(int a[], int n) //array sorting { int i, j, t; for(i = 0; i < n; i++) { for(j = i+1; j < n; j++) { if(a[i] > a[j]) { t = a[i]; a[i] = a[j]; a[j] = t; } } } } void GenAllSubset(int a[], int reqLen, int s, int currLen, bool check[], int len) { if(currLen > reqLen) return; else if (currLen == reqLen) { cout<<"\t"; cout<<"{ "; for (int i = 0; i < len; i++) { if (check[i] == true) { cout<<a[i]<<" "; } } cout<<"}\n"; return; } if (s == len) { return; } check[s] = true; GenAllSubset(a, reqLen, s + 1, currLen + 1, check, len); check[s] = false; GenAllSubset(a, reqLen, s + 1, currLen, check, len); } int main() { int i, n; bool ch[n]; cout<<"Enter the number of element array have: "; cin>>n; int arr[n]; cout<<"\n"; for (i = 0; i < n; i++) { cout<<"Enter "<<i+1<<" element: "; cin>>arr[i]; ch[i] = false; } Sorting(arr, n); cout<<"\nThe all subset of the given set in the lexicographic order: \n"; cout<<"\t{ }\n"; for(i = 1; i <= n; i++) { GenAllSubset(arr, i, 0, 0, ch, n); } return 0; }
আউটপুট
Enter the number of element array have: 6 Enter 1 element:3 Enter 2 element: 2 Enter 3 element: 1 Enter 4 element:7 Enter 5 element:6 Enter 6 element: 5 The all subset of the given set in the lexicographic order: { } { 1 } { 2 } { 3 } { 5 } { 6 } { 7 } { 1 2 } { 1 3 } { 1 5 } { 1 6 } { 1 7 } { 2 3 } { 2 5 } { 2 6 } { 2 7 } { 3 5 } { 3 6 } { 3 7 } { 5 6 } { 5 7 } { 6 7 } { 1 2 3 } { 1 2 5 } { 1 2 6 } { 1 2 7 } { 1 3 5 } { 1 3 6 } { 1 3 7 } { 1 5 6 } { 1 5 7 } { 1 6 7 } { 2 3 5 } { 2 3 6 } { 2 3 7 } { 2 5 6 } { 2 5 7 } { 2 6 7 } { 3 5 6 } { 3 5 7 } { 3 6 7 } { 5 6 7 } { 1 2 3 5 } { 1 2 3 6 } { 1 2 3 7 } { 1 2 5 6 } { 1 2 5 7 } { 1 2 6 7 } { 1 3 5 6 } { 1 3 5 7 } { 1 3 6 7 } { 1 5 6 7 } { 2 3 5 6 } { 2 3 5 7 } { 2 3 6 7 } { 2 5 6 7 } { 3 5 6 7 } { 1 2 3 5 6 } { 1 2 3 5 7 } { 1 2 3 6 7 } { 1 2 5 6 7 } { 1 3 5 6 7 } { 2 3 5 6 7 } { 1 2 3 5 6 7 }