এই টিউটোরিয়ালে, আমরা সিম্পসনের ⅜ নিয়ম বাস্তবায়নের জন্য একটি প্রোগ্রাম নিয়ে আলোচনা করব।
সিম্পসনের ⅜ নিয়মটি সংখ্যাসূচক একীকরণের জন্য ব্যবহৃত হয়। এই পদ্ধতির সবচেয়ে সাধারণ ব্যবহার হল নির্দিষ্ট অখণ্ডের সংখ্যাগত অনুমান সম্পাদন করা।
এতে, গ্রাফের প্যারাবোলাগুলি অনুমান সম্পাদনের জন্য ব্যবহৃত হয়।
উদাহরণ
#include<iostream> using namespace std; //function that is to be integrated float func_inte( float x){ return (1 / ( 1 + x * x )); } //calculating the approximations float func_calculate(float lower_limit, float upper_limit, int interval_limit ){ float value; float interval_size = (upper_limit - lower_limit) / interval_limit; float sum = func_inte(lower_limit) + func_inte(upper_limit); for (int i = 1 ; i < interval_limit ; i++) { if (i % 3 == 0) sum = sum + 2 * func_inte(lower_limit + i * interval_size); else sum = sum + 3 * func_inte(lower_limit + i * interval_size); } return ( 3 * interval_size / 8 ) * sum ; } int main(){ int interval_limit = 8; float lower_limit = 1; float upper_limit = 8; float integral_res = func_calculate(lower_limit, upper_limit, interval_limit); cout << integral_res << endl; return 0; }
আউটপুট
0.663129