রিয়েল-টাইমে মুখ সনাক্ত করা স্থির ছবিতে একটি মুখ সনাক্ত করার অনুরূপ। একমাত্র পার্থক্য হল রিয়েল-টাইম ফেস ডিটেকশনে, এবং আমাদের কম্পিউটারের একটি ভিডিও স্ট্রিম নিতে হবে। এই প্রোগ্রামে, আমরা 'VideoCapture()' ফাংশন ব্যবহার করেছি। এই ফাংশনটি অন্য ক্যামেরা থেকে ভিডিও ক্যাপচার করে এবং ফ্রেমগুলিকে অস্থায়ীভাবে এটিকে নির্ধারিত ম্যাট্রিক্সে সংরক্ষণ করে। এখানে এই ফাংশনটি ডিফল্ট ক্যামেরা থেকে ভিডিও ক্যাপচার করে এবং সাময়িকভাবে ফ্রেমগুলিকে 'real_time' ম্যাট্রিক্সে সংরক্ষণ করে।
নিম্নলিখিত প্রোগ্রামটি রিয়েল-টাইমে মানুষের মুখ সনাক্ত করে −
উদাহরণ
#include<iostream> #include<opencv2/highgui/highgui.hpp> #include<opencv2/imgproc/imgproc.hpp> //This header includes definition of 'rectangle()' function// #include<opencv2/objdetect/objdetect.hpp> //This header includes the definition of Cascade Classifier// #include<string> using namespace std; using namespace cv; int main(int argc, char** argv) { Mat video_stream;//Declaring a matrix hold frames from video stream// VideoCapture real_time(0);//capturing video from default webcam// namedWindow("Face Detection");//Declaring an window to show the result// string trained_classifier_location = "C:/opencv/sources/data/haarcascades/haarcascade_frontalface_alt.xml";//Defining the location our XML Trained Classifier in a string// CascadeClassifier faceDetector;//Declaring an object named 'face detector' of CascadeClassifier class// faceDetector.load(trained_classifier_location);//loading the XML trained classifier in the object// vector<Rect>faces;//Declaring a rectangular vector named faces// while (true) { faceDetector.detectMultiScale(video_stream, faces, 1.1, 4, CASCADE_SCALE_IMAGE, Size(30, 30));//Detecting the faces in 'image_with_humanfaces' matrix// real_time.read(video_stream);// reading frames from camera and loading them in 'video_stream' Matrix// for (int i = 0; i < faces.size(); i++){ //for locating the face Mat faceROI = video_stream(faces[i]);//Storing face in the matrix// int x = faces[i].x;//Getting the initial row value of face rectangle's starting point// int y = faces[i].y;//Getting the initial column value of face rectangle's starting point// int h = y + faces[i].height;//Calculating the height of the rectangle// int w = x + faces[i].width;//Calculating the width of the rectangle// rectangle(video_stream, Point(x, y), Point(w, h), Scalar(255, 0, 255), 2, 8, 0);//Drawing a rectangle using around the faces// } imshow("Face Detection", video_stream); //Showing the detected face// if (waitKey(10) == 27){ //wait time for each frame is 10 milliseconds// break; } } return 0; }
আউটপুট