ফাংশন যা এই কোডে মন্তব্য করা হয়েছে৷ আপনি সেইসাথে সুইচ করতে পারেন. আমরা বিভিন্ন মডিউলে সারি, স্ট্যাক এবং অগ্রাধিকার সারির ক্লাসগুলিও স্থানান্তরিত করেছি যা আমদানি বিবৃতি ব্যবহার করে বা প্রয়োজন কল ব্যবহার করে আমদানি করা যেতে পারে। এখানে গ্রাফ ক্লাস -
এর সম্পূর্ণ বাস্তবায়নউদাহরণ
const Queue = require("./Queue"); const Stack = require("./Stack"); const PriorityQueue = require("./PriorityQueue"); class Graph { constructor() { this.edges = {}; this.nodes = []; } addNode(node) { this.nodes.push(node); this.edges[node] = []; } addEdge(node1, node2, weight = 1) { this.edges[node1].push({ node: node2, weight: weight }); this.edges[node2].push({ node: node1, weight: weight }); } addDirectedEdge(node1, node2, weight = 1) { this.edges[node1].push({ node: node2, weight: weight }); } // addEdge(node1, node2) { // this.edges[node1].push(node2); // this.edges[node2].push(node1); // } // addDirectedEdge(node1, node2) { // this.edges[node1].push(node2); // } display() { let graph = ""; this.nodes.forEach(node => { graph += node + "->" + this.edges[node].map(n => n.node).join(", ") + "\n"; }); console.log(graph); } BFS(node) { let q = new Queue(this.nodes.length); let explored = new Set(); q.enqueue(node); explored.add(node); while (!q.isEmpty()) { let t = q.dequeue(); console.log(t); this.edges[t].filter(n => !explored.has(n)).forEach(n => { explored.add(n); q.enqueue(n); }); } } DFS(node) { // Create a Stack and add our initial node in it let s = new Stack(this.nodes.length); let explored = new Set(); s.push(node); // Mark the first node as explored explored.add(node); // We'll continue till our Stack gets empty while (!s.isEmpty()) { let t = s.pop(); // Log every element that comes out of the Stack console.log(t); // 1. In the edges object, we search for nodes this node is // directly connected to. // 2. We filter out the nodes that have already been explored. // 3. Then we mark each unexplored node as explored and push it // to the Stack. this.edges[t].filter(n => !explored.has(n)).forEach(n => { explored.add(n); s.push(n); }); } } topologicalSortHelper(node, explored, s) { explored.add(node); this.edges[node].forEach(n => { if (!explored.has(n)) { this.topologicalSortHelper(n, explored, s); } }); s.push(node); } topologicalSort() { // Create a Stack and add our initial node in it let s = new Stack(this.nodes.length); let explored = new Set(); this.nodes.forEach(node => { if (!explored.has(node)) { this.topologicalSortHelper(node, explored, s); } }); while (!s.isEmpty()) { console.log(s.pop()); } } BFSShortestPath(n1, n2) { let q = new Queue(this.nodes.length); let explored = new Set(); let distances = { n1: 0 }; q.enqueue(n1); explored.add(n1); while (!q.isEmpty()) { let t = q.dequeue(); this.edges[t].filter(n => !explored.has(n)).forEach(n => { explored.add(n); distances[n] = distances[t] == undefined ? 1 : distances[t] + 1; q.enqueue(n); }); } return distances[n2]; } primsMST() { // Initialize graph that'll contain the MST const MST = new Graph(); if (this.nodes.length === 0) { return MST; } // Select first node as starting node let s = this.nodes[0]; // Create a Priority Queue and explored set let edgeQueue = new PriorityQueue(this.nodes.length * this.nodes.length); let explored = new Set(); explored.add(s); MST.addNode(s); // Add all edges from this starting node to the PQ taking weights as priority this.edges[s].forEach(edge => { edgeQueue.enqueue([s, edge.node], edge.weight); }); // Take the smallest edge and add that to the new graph let currentMinEdge = edgeQueue.dequeue(); while (!edgeQueue.isEmpty()) { // COntinue removing edges till we get an edge with an unexplored node while (!edgeQueue.isEmpty() && explored.has(currentMinEdge.data[1])) { currentMinEdge = edgeQueue.dequeue(); } let nextNode = currentMinEdge.data[1]; // Check again as queue might get empty without giving back unexplored element if (!explored.has(nextNode)) { MST.addNode(nextNode); MST.addEdge(currentMinEdge.data[0], nextNode, currentMinEdge.priority); // Again add all edges to the PQ this.edges[nextNode].forEach(edge => { edgeQueue.enqueue([nextNode, edge.node], edge.weight); }); // Mark this node as explored explored.add(nextNode); s = nextNode; } } return MST; } kruskalsMST() { // Initialize graph that'll contain the MST const MST = new Graph(); this.nodes.forEach(node => MST.addNode(node)); if (this.nodes.length === 0) { return MST; } // Create a Priority Queue let edgeQueue = new PriorityQueue(this.nodes.length * this.nodes.length); // Add all edges to the Queue: for (let node in this.edges) { this.edges[node].forEach(edge => { edgeQueue.enqueue([node, edge.node], edge.weight); }); } let uf = new UnionFind(this.nodes); // Loop until either we explore all nodes or queue is empty while (!edgeQueue.isEmpty()) { // Get the edge data using destructuring let nextEdge = edgeQueue.dequeue(); let nodes = nextEdge.data; let weight = nextEdge.priority; if (!uf.connected(nodes[0], nodes[1])) { MST.addEdge(nodes[0], nodes[1], weight); uf.union(nodes[0], nodes[1]); } } return MST; } djikstraAlgorithm(startNode) { let distances = {}; // Stores the reference to previous nodes let prev = {}; let pq = new PriorityQueue(this.nodes.length * this.nodes.length); // Set distances to all nodes to be infinite except startNode distances[startNode] = 0; pq.enqueue(startNode, 0); this.nodes.forEach(node => { if (node !== startNode) distances[node] = Infinity; prev[node] = null; }); while (!pq.isEmpty()) { let minNode = pq.dequeue(); let currNode = minNode.data; let weight = minNode.priority; this.edges[currNode].forEach(neighbor => { let alt = distances[currNode] + neighbor.weight; if (alt < distances[neighbor.node]) { distances[neighbor.node] = alt; prev[neighbor.node] = currNode; pq.enqueue(neighbor.node, distances[neighbor.node]); } }); } return distances; } floydWarshallAlgorithm() { let dist = {}; for (let i = 0; i < this.nodes.length; i++) { dist[this.nodes[i]] = {}; // For existing edges assign the dist to be same as weight this.edges[this.nodes[i]].forEach( e => (dist[this.nodes[i]][e.node] = e.weight) ); this.nodes.forEach(n => { // For all other nodes assign it to infinity if (dist[this.nodes[i]][n] == undefined) dist[this.nodes[i]][n] = Infinity; // For self edge assign dist to be 0 if (this.nodes[i] === n) dist[this.nodes[i]][n] = 0; }); } this.nodes.forEach(i => { this.nodes.forEach(j => { this.nodes.forEach(k => { // Check if going from i to k then from k to j is better // than directly going from i to j. If yes then update // i to j value to the new value if (dist[i][k] + dist[k][j] < dist[i][j]) dist[i][j] = dist[i][k] + dist[k][j]; }); }); }); return dist; } } class UnionFind { constructor(elements) { // Number of disconnected components this.count = elements.length; // Keep Track of connected components this.parent = {}; // Initialize the data structure such that all // elements have themselves as parents elements.forEach(e => (this.parent[e] = e)); } union(a, b) { let rootA = this.find(a); let rootB = this.find(b); // Roots are same so these are already connected. if (rootA === rootB) return; // Always make the element with smaller root the parent. if (rootA < rootB) { if (this.parent[b] != b) this.union(this.parent[b], a); this.parent[b] = this.parent[a]; } else { if (this.parent[a] != a) this.union(this.parent[a], b); this.parent[a] = this.parent[b]; } } // Returns final parent of a node find(a) { while (this.parent[a] !== a) { a = this.parent[a]; } return a; } // Checks connectivity of the 2 nodes connected(a, b) { return this.find(a) === this.find(b); } }