বি-ট্রি হল একটি বাইনারি অনুসন্ধান গাছের একটি সাধারণীকরণ যেখানে একটি নোডে দুটির বেশি সন্তান থাকতে পারে। এটি মূলত একটি স্ব-ভারসাম্যপূর্ণ ট্রি ডেটা কাঠামো যা সাজানো ডেটা বজায় রাখে এবং লগারিদমিক সময়ে অনুক্রমিক অ্যাক্সেস, অনুসন্ধান, সন্নিবেশ এবং মুছে ফেলার অনুমতি দেয়।
বি ট্রি অফ অর্ডার 6 বাস্তবায়নের জন্য এখানে একটি C++ প্রোগ্রাম রয়েছে।
অ্যালগরিদম
ট্রিতে নোড ঢোকানোর জন্যBegin function insert() to insert the nodes into the tree: Initialize x as root. if x is leaf and having space for one more info then insert a to x. else if x is not leaf, do Find the child of x that is going to be traversed next. If the child is not full, change x to point to the child. If the child is full, split it and change x to point to one of the two parts of the child. If a is smaller than mid key in the child, then set x as first part of the child. Else second part of the child. When split the child, move a key from the child to its parent x. End
উদাহরণ কোড
#include<iostream> using namespace std; struct BTree//node declaration { int *d; BTree **child_ptr; bool l; int n; }*r = NULL, *np = NULL, *x = NULL; BTree* init()//creation of node { int i; np = new BTree; np->d = new int[6];//order 6 np->child_ptr = new BTree *[7]; np->l = true; np->n = 0; for (i = 0; i < 7; i++) { np->child_ptr[i] = NULL; } return np; } void traverse(BTree *p)//traverse the tree { cout<<endl; int i; for (i = 0; i < p->n; i++) { if (p->l == false) { traverse(p->child_ptr[i]); } cout << " " << p->d[i]; } if (p->l == false) { traverse(p->child_ptr[i]); } cout<<endl; } void sort(int *p, int n)//sort the tree { int i, j, t; for (i = 0; i < n; i++) { for (j = i; j <= n; j++) { if (p[i] >p[j]) { t = p[i]; p[i] = p[j]; p[j] = t; } } } } int split_child(BTree *x, int i) { int j, mid; BTree *np1, *np3, *y; np3 = init();//create new node np3->l = true; if (i == -1) { mid = x->d[2];//find mid x->d[2] = 0; x->n--; np1 = init(); np1->l= false; x->l= true; for (j = 3; j < 6; j++) { np3->d[j - 3] = x->d[j]; np3->child_ptr[j - 3] = x->child_ptr[j]; np3->n++; x->d[j] = 0; x->n--; } for (j = 0; j < 6; j++) { x->child_ptr[j] = NULL; } np1->d[0] = mid; np1->child_ptr[np1->n] = x; np1->child_ptr[np1->n + 1] = np3; np1->n++; r = np1; } else { y = x->child_ptr[i]; mid = y->d[2]; y->d[2] = 0; y->n--; for (j = 3; j <6 ; j++) { np3->d[j - 3] = y->d[j]; np3->n++; y->d[j] = 0; y->n--; } x->child_ptr[i + 1] = y; x->child_ptr[i + 1] = np3; } return mid; } void insert(int a) { int i, t; x = r; if (x == NULL) { r = init(); x = r; } else { if (x->l== true && x->n == 6) { t = split_child(x, -1); x = r; for (i = 0; i < (x->n); i++) { if ((a >x->d[i]) && (a < x->d[i + 1])) { i++; break; } else if (a < x->d[0]) { break; } else { continue; } } x = x->child_ptr[i]; } else { while (x->l == false) { for (i = 0; i < (x->n); i++) { if ((a >x->d[i]) && (a < x->d[i + 1])) { i++; break; } else if (a < x->d[0]) { break; } else { continue; } } if ((x->child_ptr[i])->n == 6) { t = split_child(x, i); x->d[x->n] = t; x->n++; continue; } else { x = x->child_ptr[i]; } } } } x->d[x->n] = a; sort(x->d, x->n); x->n++; } int main() { int i, n, t; cout<<"enter the no of elements to be inserted\n"; cin>>n; for(i = 0; i < n; i++) { cout<<"enter the element\n"; cin>>t; insert(t); } cout<<"traversal of constructed B tree\n"; traverse(r); }
আউটপুট
enter the no of elements to be inserted 7 enter the element 10 enter the element 20 enter the element 30 enter the element 40 enter the element 50 enter the element 60 enter the element 70 traversal of constructed B tree 10 20 30 40 50 60 70