কেরাস মানে গ্রীক ভাষায় 'শিং'। কেরাসকে ONEIROS (ওপেন এন্ডেড নিউরো-ইলেক্ট্রনিক ইন্টেলিজেন্ট রোবট অপারেটিং সিস্টেম) প্রকল্পের গবেষণার অংশ হিসাবে তৈরি করা হয়েছিল। কেরাস একটি গভীর শিক্ষার API, যা পাইথনে লেখা। এটি একটি উচ্চ-স্তরের API যার একটি উত্পাদনশীল ইন্টারফেস রয়েছে যা মেশিন লার্নিং সমস্যা সমাধানে সহায়তা করে৷
এটি টেনসরফ্লো ফ্রেমওয়ার্কের উপরে চলে। এটি একটি দ্রুত পদ্ধতিতে পরীক্ষা সাহায্য করার জন্য নির্মিত হয়েছিল. এটি প্রয়োজনীয় বিমূর্ততা এবং বিল্ডিং ব্লকগুলি প্রদান করে যা মেশিন লার্নিং সমাধানগুলি বিকাশ এবং এনক্যাপসুলেট করার জন্য অপরিহার্য৷
এটি অত্যন্ত স্কেলযোগ্য এবং ক্রস-প্ল্যাটফর্ম ক্ষমতার সাথে আসে। এর মানে কেরাস টিপিইউ বা জিপিইউ এর ক্লাস্টারে চালানো যেতে পারে। কেরাস মডেলগুলি একটি ওয়েব ব্রাউজার বা মোবাইল ফোনেও চালানোর জন্য রপ্তানি করা যেতে পারে৷
কেরাস ইতিমধ্যেই টেনসরফ্লো প্যাকেজের মধ্যে উপস্থিত রয়েছে। এটি কোডের নীচের লাইন ব্যবহার করে অ্যাক্সেস করা যেতে পারে।
import tensorflow from tensorflow import keras
কেরাস ফাংশনাল এপিআই এমন মডেল তৈরি করতে সাহায্য করে যা ক্রমিক এপিআই ব্যবহার করে তৈরি মডেলের তুলনায় আরও নমনীয়। কার্যকরী API নন-লিনিয়ার টপোলজি রয়েছে এমন মডেলগুলির সাথে কাজ করতে পারে, স্তরগুলি ভাগ করতে পারে এবং একাধিক ইনপুট এবং আউটপুটগুলির সাথে কাজ করতে পারে। একটি গভীর শিক্ষার মডেল সাধারণত একটি নির্দেশিত অ্যাসাইক্লিক গ্রাফ (DAG) যাতে একাধিক স্তর থাকে। কার্যকরী API স্তরগুলির গ্রাফ তৈরি করতে সহায়তা করে৷
আমরা নিচের কোডটি চালানোর জন্য Google Colaboratory ব্যবহার করছি। Google Colab বা Colaboratory ব্রাউজারে Python কোড চালাতে সাহায্য করে এবং এর জন্য শূন্য কনফিগারেশন এবং GPUs (গ্রাফিক্যাল প্রসেসিং ইউনিট) তে বিনামূল্যে অ্যাক্সেস প্রয়োজন। জুপিটার নোটবুকের উপরে কোলাবোরেটরি তৈরি করা হয়েছে।
উদাহরণ
print("The model is being plotted") keras.utils.plot_model(model, "my_resnet.png", show_shapes=True)
কোড ক্রেডিট - https://www.tensorflow.org/guide/keras/functional
আউটপুট
ব্যাখ্যা
-
'প্লট_মডেল' পদ্ধতিটি মডেলের স্তরগুলিকে গ্রাফ-অফ-লেয়ার হিসাবে প্লট করতে ব্যবহৃত হয়৷