কলামের নিয়ম সেট করতে, শর্টহ্যান্ড কলাম-রুল বৈশিষ্ট্য ব্যবহার করুন, যা আপনাকে নিম্নলিখিত বৈশিষ্ট্যগুলি সেট করতে দেয় -
column-rule-width: set the width of the rule between columns column-rule-style: set the style of the rule between columns column-rule-color: set the rule of the rule between columns
কলাম নিয়মের মান −
হিসাবে সেট করা যেতে পারেcolumn-rule: column-rule-width column-rule-style column-rule-color|initial|inherit;
উদাহরণ
এখন আরেকটি উদাহরণ দেখা যাক -
<!DOCTYPE html> <html> <head> <style> .demo { column-count: 5; -webkit-column-count: 5; /* Chrome, Safari, Opera */ -moz-column-count: 5; /* Firefox */ -webkit-column-gap: normal; /* Chrome, Safari, Opera */ -moz-column-gap: normal; /* Firefox */ column-gap: normal; -webkit-column-rule: 5px dotted orange; /* Chrome, Safari, Opera */ -moz-column-rule: 5px dotted orange; /* Firefox */ column-rule: 5px dotted orange; } </style> </head> <body> <h1>PyTorch</h1> <div class="demo"> PyTorch is defined as an open source machine learning library for Python. It is used for applications such as natural language processing. It is initially developed by Facebook artificial-intelligence research group, and Uber’s Pyro software for probabilistic programming which is built on it. Originally, PyTorch was developed by Hugh Perkins as a Python wrapper for the LusJIT based on Torch framework. There are two PyTorch variants. PyTorch redesigns and implements Torch in Python while sharing the same core C libraries for the backend code. PyTorch developers tuned this back-end code to run Python efficiently. They also kept the GPU based hardware acceleration as well as the extensibility features that made Lua-based Torch. </div> </body> </html>
আউটপুট
উদাহরণ
আসুন একটি উদাহরণ দেখি যেখানে আমরা উপরের সমস্ত বৈশিষ্ট্যগুলিকে শর্টহ্যান্ড প্রপার্টি কলাম-রুল হিসাবে ব্যবহার করছি -
<!DOCTYPE html> <html> <head> <style> .demo { column-count: 4; -webkit-column-count: 4; /* Chrome, Safari, Opera */ -moz-column-count: 4; /* Firefox */ -webkit-column-gap: normal; /* Chrome, Safari, Opera */ -moz-column-gap: normal; /* Firefox */ column-gap: normal; -webkit-column-rule-width: 5px; /* Chrome, Safari, Opera */ -moz-column-rule-width: 5px; /* Firefox */ column-rule-width: 5px; -webkit-column-rule-color: blue; /* Chrome, Safari, Opera */ -moz-column-rule-color: blue; /* Firefox */ column-rule-color: blue; -webkit-column-rule-style: double; /* Chrome, Safari, Opera */ -moz-column-rule-style: double; /* Firefox */ column-rule-style: double; } </style> </head> <body> <h1>PyTorch</h1> <div class="demo"> PyTorch is defined as an open source machine learning library for Python. It is used for applications such as natural language processing. It is initially developed by Facebook artificial-intelligence research group, and Uber’s Pyro software for probabilistic programming which is built on it. Originally, PyTorch was developed by Hugh Perkins as a Python wrapper for the LusJIT based on Torch framework. There are two PyTorch variants. PyTorch redesigns and implements Torch in Python while sharing the same core C libraries for the backend code. PyTorch developers tuned this back-end code to run Python efficiently. They also kept the GPU based hardware acceleration as well as the extensibility features that made Lua-based Torch. </div> </body> </html>
আউটপুট